头像

LI FANZHU

Associate professor

Department: College of Materials Science and Engineering

Fields: Rubber characterization and simulation

Email: lifz@buct.edu.cn

Office: DIANJIAO BUILDING 102A

ORCID: 0000-0003-2417-3232

DBLP:

10 Visits

Introduction

Education:

(1) 2012-09 to2017-06, Beijing University of Chemical Technology, Materials Science and Engineering, PhD in Engineering

(2) 2008-09 to2012-06, Nanjing Forestry University, Polymer Materials and Engineering, Bachelor



Postdoctoral work experience:

(1) 2017-06 to2020-04, Beijing University of Chemical Technology


Research and work experience:

(1) 2020-05 to2022-11, Beijing University of Chemical Technology, Lecturer

(1) 2022-12 to present,   Beijing University of Chemical Technology, Associate Professor

Education Work Experience

Social Position

Social Activities

Research

A systematic investigation has been conducted on rubber materials and products, encompassing novel hyperelastic constitutive models, viscoelastic thermo-mechanical coupling algorithms, multiaxial fatigue initiation life prediction methods, and fatigue-resistant design strategies for rubber components. To date, over 50 academic papers have been published in prominent domestic and international journals as first or corresponding author, with more than 30 indexed by SCI. Five invention patents have been filed, six software copyrights obtained, and one national standard co-edited.

Teaching

Teaching Experience

  1. Production Internship in Elastomer Processing Engineering (Undergraduate course)

  2. Theory and Application of Computer Simulation (Undergraduate course)

  3. Theoretical Simulation and Application of Polymeric Materials (Graduate course)

  4. Engineering Design of Elastomer Products (Course for international students)

Postgraduates

Funding

Over the past five years, as the principal investigator, more than ten projects have been led or completed, including the National Natural Science Foundation of China (General and Youth Programs), subprojects of the National Key R&D Program, and commissioned technology development projects from enterprises and institutions.

Vertical Project

Horizontal Project

Publications

[1] Zhaoyang Wang; Yong Zhou; Juan Liu; Zhen Xu; Meimei Chen; Rui Gao*; Shaojian He*; Fanzhu Li*. Fatigue life investigation of rubber bearing for heavy trucks: Optimal design by using finite element method with experimental verification. International Journal of Fatigue, 2024, 180: 108080. doi: 10.1016/j.ijfatigue.2023.108080

[2] Peng Li; Bochao Gu; Feng Wang; Jichuan Zhang; Xiaolin Li; Dongli Han*; Li Liu*; Fanzhu Li*. Self-heating and fatigue crack growth behavior of reinforced NR/BR nanocomposites with different blending ratio. International Journal of Fatigue, 2024, 183: 108238. doi:10.1016/j.ijfatigue.2024.108238

[3] Xianqi Wan; Yaru Zhang; Qiang Zhang; Liqun Zhang; Fanzhu Li*. User Subroutines Platform Development for Rubber Hyperelastic Constitutive Models and Its Application in Finite Element Analysis. Computational Materials Science, 2024, 237: 112885. doi: 10.1016/j.commatsci.2024.112885

[4] Hong He*; Yishen Zhang; Huajian Zhu; Fuliang Zhang; Zhipeng Shen; Di'e Xiao; Xianzhi Pan; Fanzhu Li*. The thermal model and vertical trajectory prediction of the high-altitude float of double-layer latex balloon. Case Studies in Thermal Engineering, 2024, 53: 103933. doi: 10.1016/j.csite.2023.103933

[5] Hong He*; Yishen Zhang; Zhipeng Shen; Die Xiao; Yunzhen Jiang; Liqun Zhang; Fanzhu Li*. High-altitude long-duration latex balloon venting valves. Advances in Space Research, 2024, 73(6): 3209-3221. doi: 10.1016/j.asr.2023.12.061

[6] Meimei Chen; Yong Zhou; Zixu Shen; Juan Liu; Rui Gao*; Xiaolin Li; Liqun Zhang; Fanzhu Li*. A crosslinking kinetic model considering reversion effect with verification and its application in thick rubber vulcanization process. Polymer, 2023, 287: 126443. doi: 10.1016/j.polymer.2023.126443

[7] Hong He*; Zhuang Shao; Shikai Hu; Yonglai Lu; Fanzhu Li*. Comparative study on curing kinetics of MDI-based polyurethanes with different chain length diol curing agents. Polymer, 2023, 290: 126541. doi: 10.1016/j.polymer.2023.126541

[8] Hong He*; Yu Xing; Runguo Wang; Yonglai Lu; Liqun Zhang; Fanzhu Li*. Optimization design of cooling system for injection molding mold of non-pneumatic tire. Thermal Science and Engineering Progress, 2023, 42: 101866. doi: 10.1016/j.tsep.2023.101866

[9] Chen Liu; Bochao Gu; Feng Wang; Bo Lu; Fengzhu Liu; Jun Liu; Yonglai Lu*; Liqun Zhang; Fanzhu Li*. Waveform impact on thermo-mechanical fatigue crack growth of a non-crystallizing rubber: Experimental observation and numerical simulation. Composites Part B: Engineering, 2023, 255: 110604. doi: 10.1016/j.compositesb.2023.110604

[10] Gao Pan; Meimei Chen; Yao Wang; Jichuan Zhang; Li Liu*; Liqun Zhang; Fanzhu Li*. Hyper-Pseudo-Viscoelastic Model and Parameter Identification for Describing Tensile Recovery Stress–Strain Responses of Rubber Components in TBR. Polymers, 2022, 15: 76. doi:10.3390/polym15010076

[11] Wenjie Wu; Shipeng Wen; Yi Wei; Lu Ruan; Fanzhu Li*; Xia Cao*; Zhong Lin Wang; Liqun Zhang*. A volatile organic compound free unibody triboelectric nanogenerator and its application as a smart green track. Nano Energy, 2023, 105: 108001. doi: 10.1016/j.nanoen.2022.108001

[12] Wencai Wang; Xueyang Bai; Siao Sun; Yangyang Gao; Fanzhu Li*; Shikai Hu*. Polysiloxane-Based Polyurethanes with High Strength and Recyclability. International Journal of Molecular Sciences, 2022, 23(20): 12613. doi: 10.3390/ijms232012613

[13] Ke Gao; Yongdi Huang; Yue Han; Yangyang Gao; Caibo Dong; Jun Liu*; Fanzhu Li*; Liqun Zhang*. Designing Heterogeneous Surfaces of Two-Dimensional Nanosheets to Maximize Mechanical Reinforcing of Polymer Nanocomposites via Molecular Dynamics Simulation. Macromolecules, 2022, 55(15): 6620-6632. doi: 10.1021/acs.macromol.2c00375

[14] Hong He; Jinming Liu; Yaru Zhang; Xue Han; William V. Mars; Liqun Zhang; Fanzhu Li*. Heat Build-Up and Rolling Resistance Analysis of a Solid Tire: Experimental Observation and Numerical Simulation with Thermo-Mechanical Coupling Method. Polymers, 2022, 14(11): 2210. doi: 10.3390/polym14112210

[15] Chen Liu; Bochao Gu; Jianfeng Chen; Liqun Zhang; Yonglai Lu*; Fanzhu Li*. Thermo-mechanical coupling analysis of edge-cracked rubber specimen focusing on the crack tip: experimental observation and numerical simulation. Materials Today Communications, 2022, 31: 103348. doi: 10.1016/j.mtcomm.2022.103348

[16] Hong He; Qiang Zhang; Yaru Zhang; Jianfeng Chen; Liqun Zhang*; Fanzhu Li*. A comparative study on 85 hyperelastic constitutive models for both the unfilled rubber and highly filled rubber nanocomposite. Nano Materials Science, 2022, 4(2): 64-82. doi: 10.1016/j.nanoms.2021.07.003

[17] Wenjie Wu; Shuangkun Zhang; Zhanpeng Wu; Sichen Qin; Fanzhu Li*;Tianfu Song; Xia Cao; Zhong Lin Wang*; Liqun Zhang*. On the understanding of dielectric elastomer and its application for all-soft artificial heart. Science Bulletin, 2021, 66(10): 981-990. doi: 10.1016/j.scib.2020.12.033

[18] Jingchao Li; Fanzhu Li*;Xiuying Zhao; Wenfeng Zhang; Shoujun Li; Yonglai Lu*;Liqun Zhang. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites. ACS Applied Electronic Materials, 2020, 2(6): 1661-1669. doi: 10.1021/acsaelm.0c00227

[19] Jun Chen#; Fanzhu Li#;Yanlong Luo#; Yijun Shi; Xiaofeng Ma; Meng Zhang; D. W. Boukhvalova; Zhenyang Luo*. A self-healing elastomer based on an intrinsic non-covalent cross-linking mechanism. Journal of Materials Chemistry A, 2019, 7(25): 15207-15214. doi: 10.1039/c9ta03775f

[20] Yangyang Gao; Fan Qu; Wencai Wang; Fanzhu Li*;Xiuying Zhao*; Liqun Zhang*. Increasing the electrical conductivity of polymer nanocomposites under the external field by tuning nanofiller shape. Composites Science and Technology, 2019, 176: 37-45. doi: 10.1016/j.compscitech.2019.03.025

[21] Guo Hao; Fanzhu Li*;Shipeng Wen; Haibo Yang; Liqun Zhang. Characterization and quantitative analysis of crack precursor size for rubber composites. Materials, 2019, 12(20): 3442. doi:10.3390/ma12203442

[22] Fanzhu Li; Huan Zhang; Tiantian Li; Jun Liu; Yangyang Gao*; Liqun Zhang*. Effect of the nanofiller shape on the conductive network formation of polymer nanocomposites via a coarse-grained simulation. Rubber Chemistry and Technology, 2018, 91(4): 757-766. doi: 10.5254/rct.18.81546

[23] Fanzhu Li; Feng Liu; Jun Liu; Yangyang Gao*; Yonglai Lu; Jianfeng Chen; Haibo Yang*; Liqun Zhang*. Thermo-mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: numerical simulation and experimental verification. Composites Science and Technology, 2018, 167:404-410. doi: 10.1016/j.compscitech.2018.08.034

[24] Fanzhu Li; Jun Liu; Haibo Yang; Yonglai Lu*; Liqun Zhang*. Numerical simulation and experimental verification of heat build-up for rubber compounds. Polymer, 2016, 101: 199-207. doi: 10.1016/j.polymer.2016.08.065

[25] Fanzhu Li; Jinpeng Liu; W.V. Mars; Tung W. Chan; Yonglai Lu; Haibo Yang*; Liqun Zhang*. Crack precursor size for natural rubber inferred from relaxing and non-relaxing fatigue experiments. International Journal of Fatigue, 2015, 80: 50-57. doi: 10.1016/j.ijfatigue.2015.05.011

Awards

In 2024, the “China Rubber Technology Innovation Award” was conferred by the Chemical Industry and Engineering Society of China. The research achievement titled “Key Technologies and Engineering Applications of High-Performance Rubber Air Springs for High-Speed Rail” passed technical appraisal confirming its internationally advanced level, and was awarded the First Prize of Scientific and Technological Progress by the China Petroleum and Chemical Industry Federation in 2024 (ranking second).

patent

Honor Reward

Admissions Information