IntroductionI am serious and responsible for my work, treat people sincerely, love teaching, care for students, and like to discuss problems with young people. EducationWork ExperienceSocial PositionSocial ActivitiesResearchDynamical system TeachingAdvanced Math;Mathematical Analysis; Ordinary Differential Equations; Linear Algebra; Complex Variable Functions and Integral Transformations; Numerical Analysis; Computational Methods; PostgraduatesFundingVertical ProjectHorizontal ProjectPublications[1]Wei Li,Zhujun Jing, Pengcheng Xu, Bifurcation and Chaos in a Weakly Nonlinear System Subjected to Combined Parametric and External Excitation,Acta Mathematicae Sinica, English Series, 2002, 8(3): 501-512. (SCI) [2]Wei Li, Zhujun Jing, Pengcheng Xu, the Existence of Silnikov's Orbit in One Couple-Duffing Equation, Acta Mathematicae Sinica, English Series, 2003, 19(4): 677-690. (SCI) [3]Wei Li,Zhujun Jing, Pengcheng Xu, the Existence of Silnikov's Orbit in Four-dimensional Duffing's Systems, Science in China Series A-Mathematics, 2003, 46(1): 11-23. (SCI) [4]Wei Li, Ushio, Control of Chaos in a Switched Arrival System with Internal Connections, Proceedings of 47 IEEE International Midwest Symposium on Circuits and Systems, 2004, vol.II: 601-604. (EI) [5]潮俊光,李威,スイッチトアライバルシステムのハイブリッド制御, 2005年電子情報通信学会総合大会講演文集, 2005, S: 77-78. [6]Wei Li, Toshimitsu Ushio,Control of a Chaotic Switched Arrival System with Controlled Internal Connections, International Journal of Bifurcation and Chaos, 2006, 16(3): 21-25. (SCI) [7]陈明,李威,多边时滞脉冲反馈控制开关到达系统的混沌, 北京化工大学学报. 35(6):102-105, 2008(EI) [8]魏飞,李威,构造一类具有Silnikov鞍焦同宿轨的动力系统, 北京化工大学学报. 38(1): 140-143, 2011(EI) [9]汪渝,李威,RLC锁相环的动力特性, 北京化工大学学报. 40(1),120-124,2013(EI) [10]龙岳飞,李威,非线性KP-BBM方程行波解的动态分析, 北京化工大学学报. 41(4) 125-128, 2014(EI) [11]Juan Zhao, Wei Li,Exact Solitary Wave Solution in the ZK-BBM Equation,Journal of Nonlinear Dynamics.Article ID 468392,2014 [12]赵娟,李威,非线性ZK-BBM方程的扰动分析,北京化工大学学报.42(3)116-119,2015(EI) [13]Li Wei,Chen Changyuan,Dong Shihai,Ring-Shaped Potential and a Class of Relevant Integrals Involved Universal Associated Legendre Polynomials with Complicated Arguments,ADVANCES IN HIGH ENERGY PHYSICS,2017. (SCI三区1.74) [14]窦效刚,许鹏程,李威,混沌系统周期轨道的最速下降方法研究,北京化工大学学报(自然科学版),vol.44(06),111-115, 2018. (EI) [15]Mai Xinlei,Li Wei,Dong Shihai,Exact Solutions to the Nonlinear Schrodinger Equation with Time-Dependent Coefficients,ADVANCES IN HIGH ENERGY PHYSICS,2021,(SCI四区1.771) [16]买欣蕾,李威,具有高阶色散和立方-五次非线性项的薛定谔方程的精确解,北京化工大学学报(自然科学版),vol.48(03), 114-120, 2021. (EI) [17]练少鹏, 李威, 含有三阶色散和自频移与自陡峭项的立方-五次非线性薛定谔方程的孤子解, 北京化工大学学报(自然科学版),vol.49(03), 108-114, 2022. (EI) [18]Guo Yashan, Li Wei, Dong Shihai, Gaussian solitary solution for a class of logarithmic nonlinear Schrodinger equation in (1+N) Dimensions, RESULTS IN PHYSICS, vol.44, 2023-01,(SCI二区4.565) [19]高晓涵,李威. 具有高阶色散和立方-五次非线性项的薛定谔方程的孤立波的保持性[J]. 北京化工大学学报(自然科学版)(EI)AwardsPatentHonor RewardAdmissions Information |