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Abstract—Mutation-Based Fault Localization (MBFL) is one
of the most widely studied techniques. MBFL adopts mutation
analysis to generate mutants for revealing potential faults in
the program. Previous studies proposed approaches to optimize
MBFL in terms of efficiency and accuracy. However, these
approaches ignored the difference of mutants on correct entities
(such as statements) and faulty entities, which we refer this kind
of difference as mutant bias. In this study, we identify and analyze
the impact of mutant bias on MBFL. We find that the mutant bias
may introduce effects to statement suspiciousness and negatively
influence the fault localization accuracy of MBFL. To mitigate
the mutant bias, we propose Delta4Ms, a model that captures
the mutant bias from the mutants of the same statements. Then
the real suspiciousness is obtained by removing the bias from
the practical suspiciousness. To evaluate the performance of our
proposed method, we conduct experimental studies on 320 real-
world programs from Codeflaws. The experimental results show
that Delta4Ms improves the fault localization accuracy of MBFL.
Besides, Delta4Ms outperforms the state-of-the-art SBFL and
three MBFL techniques significantly. Moreover, Delta4Ms ranks
94 and 161 of the target faults within the top-5 suspicious state-
ments in single-fault and multiple-fault programs, respectively.

Index Terms—Software testing, Fault localization, Mutation
testing, Mutation-based fault location

I. INTRODUCTION

Fault localization is an expensive and time-consuming
phase in the software debugging activity [1]. Developers
spend a large amount of effort to locate the root cause
of the program failures. As a result, automated fault local-
ization techniques (such as spectrum-based techniques [2]–
[4], information retrieval-based techniques [5]–[7], machine
learning-based techniques [8]–[10], and mutation-based tech-
niques [11]–[15]) have been widely studied.

Among these automatic fault localization techniques, Spec-
trum Based Fault Localization (SBFL) is the most widely
studied technique [2]–[4], [16]. SBFL obtains coverage in-
formation and execution results of program elements (In
this study, we concern statement-level faults) and uses this
information to calculate the probability of faulty program
entities (i.e., suspiciousness) and returns a ranking list of the
program entities [17]. Previous studies [2]–[4] have shown that
SBFL is simple, lightweight, and efficient. However, such a
technique cannot achieve a better fault localization accuracy
since it only adopts program spectrum information [12], [18].

Mutation-Based Fault Localization (MBFL) is a kind of
technique that utilize mutation analysis [19]. MBFL works by
making simple changes to the programs, which can generate
faulty programs (i.e., mutants [11]). Two pioneer MBFL
techniques (i.e., Metallaxis [13] and MUSE [11]) are proposed
and this kind of technique performs better than the SBFL
techniques [11], [13]. Since Metallaxis outperforms MUSE in
the study of Pearson et al. [20], we mainly focus on Metallaxis
and propose a method to improve its accuracy.

Recently, researchers have improved MBFL by combining
different techniques, such as utilizing higher-order mutants
to simulate complex faults to improve the location accuracy
or addressing the practical issues related to the high cost of
MBFL [21], [22]. Meanwhile, a theoretical framework has
been proposed for understanding the MBFL [1], [23], which
moves a step forward in revealing the reasons why MBFL
techniques are effective.

However, there is no research investigating the intrinsic
limitation of the traditional MBFL technique Metallaxis. Met-
allaxis takes the maximum suspiciousness of the mutants to
the statements but cannot capture the difference of mutants
on correct entities (i.e., statements or functions) and faulty
entities, which is called as mutant bias. Especially, such bias
may lead Metallaxis to assign an inflated (i.e., higher than the
actual) suspiciousness on a correct entity or a deflated one
on a faulty entity. We notice that the suspiciousness of the
program entity can be assessed by the execution behavior of
the mutants, and this analysis inspires our study.

In this paper, we propose a model Delta4Ms (Delta for
Mutants) to address the intrinsic limitation of MBFL. We
formulate the problem of mutant bias and present a theoretical
model to analyze its influence on MBFL. Delta4Ms is built
upon the practical observation (i.e., calculated suspiciousness
of program entities) and signal theory that the information
of a signal is often accompanied by noise (i.e., the effects
come from mutants). Delta4Ms models two fundamental com-
ponents of the actual suspiciousness of program entities and
the effects brought by mutant bias, as the desired signal and
false signal. Then, Delta4Ms returns the desired signal by
removing the false signal. Furthermore, to obtain a precise
mutant bias, we introduce higher-order mutants (i.e., multiple
changes in single statements) for Delta4Ms.



The experiments on 320 real-fault programs show that
Delta4Ms outperform SBFL(i.e., GP13 [24], Ochiai [25],
Op2 [26], and Tarantula [27]) and three MBFL techniques (i.e.,
MUSE [11], Metallaxis [13], and MCBFL-hybrid-avg [20]
in terms of the metrics EXAM , MAP and Top-N . Also,
Delta4Ms can significantly improve the accuracy of MBFL
both in single-fault programs and multiple-fault programs
by 134.9% and 100.9% respectively in terms of the metric
MAP . Detailed statistical results indicate that Delta4Ms sig-
nificantly improve the fault localization effectiveness of MBFL
techniques. However, Delta4Ms also needs more costs than
MBFL techniques, which leaves room for reducing the cost
of Delta4Ms in the future.

In summary, the contributions of our study can be summa-
rized as follows:

• We systematically investigate the influence of mutant bias
on the performance of MBFL techniques. We formalize
the model and model the mutant bias with signal theory
and analyze its effects. Moreover, we provide a theoretical
foundation of our model via proof and derivation.

• We propose Delta4Ms, which can mitigate the negative
effect of mutant bias and improve the performance of
MBFL.

• By conducting the empirical study on a real-world bench-
mark Codeflaws, We demonstrate the impact of mutant
bias on the performance of MBFL in single-fault and
multiple-fault programs and show the effectiveness of
Delta4MS.

• We share both the dataset and source code of our study on
the GitHub repository1 for other researchers in replicating
our study and evaluating their proposed new techniques.

The rest of this paper is organized as follows. Section II
summarizes the background and related work. Section III
shows our research motivation by a simple example. Sec-
tion IV describes the details of our proposed method. Sec-
tion V illustrates the experimental setup and Section VI
analyzes our experimental results. Finally, Section VII sum-
marizes our study with potential future work.

II. BACKGROUND AND RELATED WORK

A. Mutation-based Fault Localization

Mutation-based fault localization (MBFL) is a well-studied
technique that is based on mutation analysis [18]. Mutation
analysis works by seeding artificial faults (i.e., mutants) in
the program under test. The rules that define how mutants
are generated are called mutation operators (see Table I).
Mutation analysis uses mutants to evaluate the quality of test
cases based on how their behavior differs from that of the
original program [28]. If the behavior of a mutant is different
from the original program for a test case, we say that this
mutant is killed or detected. Otherwise, we say that the
mutant is notkilled or live [29].

1The url of the GitHub repository will be available after this paper is
accepted.

MBFL identifies suspicious mutants and uses them to
identify faulty statements. Papadakis and Traon firstly applied
MBFL to fault localization [12], [13] and they found MBFL
can effectively locate “unknown” faults in the program. Later,
they proposed Metallaxis [13] to further optimize MBFL.
From another aspect, Moon et al. [11] observed that mutants
are more likely to fail on the correct statements and pass on
the faulty statements. Then they proposed MUSE that can
significantly outperform the state-of-the-art SBFL technique
Op2 [26]. Pearson et al. [20], [30] conducted an empirical
study and indicated that Metallaxis can outperform MUSE on
fault localization effectiveness. Therefore, we focus our study
on Metallaxis in this study. The classical MBFL approach
includes the following four steps:

1) Obtain statements covered by failed test cases : MBFL
firstly executes the program under test P against the test suite
T . Then the coverage information and the results (passed or
failed) can be collected. Based on the execution results, T is
split into the passed test set Tp and the failed test set Tf .
The statements covered by the failed test cases are denoted as
Covf .

2) Generate and execute mutants: MBFL uses mutation
operators to insert faults into the statements from Covf . Then,
the mutants of the statement s are generated, denoted asM(s).
Each mutant m in M(s) are executed by the test cases in T .
Later, the test cases can be classified into Tn(m) and Tk(m),
where Tn(m) is the set of test cases that cannot kill the mutant
m and Tk(m) is the set of test cases that can kill the mutant
m.

TABLE I
MUTATION OPERATORS FOR MBFL

Mutation
Operator Description Example

CRCR Required constant replacement a=b + *p → a=0 + *p
OAAN Arithmetic operator mutation a + b → a * b
OAAA Arithmetic assignment mutation a += b → a -= b
OCNG Logical context negation if(a) → if(!a)
OIDO Increment/decrement mutation ++a → a++
OLLN Logical operator mutation a && b → a ‖ b
OLNG Logical negation a && b → !(a && b)
ORRN Relational operator mutation a < b → a <= b
OBBA Bitwise assignment mutation a &= b → a |= b
OBBN Bitwise operator mutation a & b → a | b
OCOR Cast operator replacement int a → float a
SRSR Return statement replacement return 0 → return 1

VTWD Twiddle Mutations a = b → a = b + 1
VDTR Domain Trap c = a → c = a *0
SSDL Statement deletion a = 1 → <no-op>

3) Compute the suspiciousness: MBFL first computes the
suspiciousness of mutants based the following four parameters:
anp(m) = |Tn(m) ∩ Tp|, akp(m) = |Tk(m) ∩ Tp|, anf (m) =
|Tn(m) ∩ Tf |, and akf (m) = |Tk(m) ∩ Tf |, where anp(m)
denotes the number of the passed test cases which cannot kill
m, akp(m) denotes the number of the passed test cases which
can kill m, anf (m) denotes the number of the failed test cases
which cannot kill m, and akf (m) denotes the number of the
failed test cases which can kill m. For MUSE, the following
two parameters will be used: (1) the parameter f2p denotes the



number of cases in the whole program there a mutant caused
any failing test to pass. (2) the parameter p2f denotes the
number of cases in the whole program there a mutant caused
any passing test to fail.

Table II listed five MBFL formulas (i.e., GP13 [24],
Ochiai [25], Op2 [26], Tarantula [27], MUSE [11]) used in our
study and these formulas have been widely used in previous
studies [24]–[27].

TABLE II
SUSPICIOUSNESS FORMULAS FOR MBFL

Name Formula

GP13 [24] Sus(m) = akf

(
1 + 1

2akp+akf

)
Ochiai [25] Sus(m) =

akf√
(akf+anf )(akf+akp)

Op2 [26] Sus(m) = akf −
akp

akp+anp+1

Tarantula [27] Sus(m) =

akf
akf+akp

akf
akf+akp

+
akp

akp+anp

MUSE [11] Sus(m) = (akf + anf )− f2p
p2f

(akp + anp)

Then, the suspiciousness of the statement s is assigned
by the maximum suspiciousness of the mutants generated
by s: sus(s) = max {sus(m1), sus(m2), · · · , sus(mq)},
where m1, · · · ,mq are mutants in M(s) and sus(s) is the
suspiciousness of the statement s. For MUSE, max will be
changed to average.

4) Generate fault localization report: Finally, MBFL ar-
ranges the statements in descending order based on their
suspiciousness value and returns a ranking list. Later the
developers use this ranking list to localize the faults in the
program and then fix them.

Based on the description of the above process, we can find
that MBFL works based on the assumption that mutants killed
mostly by the failed test cases have a connection with the
program faults. Recent studies [13], [18] also demonstrated
that MBFL could significantly outperform other types of
fault localization techniques (such as spectrum-based fault
localization techniques [12], [18]).

B. Higher-order Mutation Testing

OriginalOriginal
s1s1: bool f(int a, int b):
s1s1:     if(a > 1 && b < 0)
s1s1:         return a > b
s1s1:     return a < b

bool f(int a, int b):
    if(a < 1 && b < 0)
        return a > b
    return a < b

FOM2FOM2

bool f(int a, int b):
    if(a > 1 | | b < 0)
        return a > b
    return a < b

FOM1FOM1

bool f(int a, int b):
    if(a > 1 && b < 0)
        return a < b
    return a < b

FOM3FOM3

bool f(int a, int b):
    if(a < 1 | | b < 0)
        return a > b
    return a < b

HOM1HOM1

bool f(int a, int b):
    if(a < 1 && b < 0)
        return a < b
    return a < b

HOM2HOM2

Multiple mutates on 
a single statement

Multiple mutates on 
multiple statements

s1s1:
s2s2:
s3s3:
s4s4:

Fig. 1. An example of FOMs and HOMs

Higher-order Mutation Testing (HOM Testing) was first
introduced by Jia and Harman [31]. According to their study,

mutants can be classified into two types: First-Order-Mutants
(FOMs) and Higher-Order-Mutants (HOMs). Both these two
types of mutants were first proposed by Offutt et al. [32],
and these two types were named simple mutants and complex
mutants in their study.
Definition 1 (FOM). A First Order Mutant (FOM) of a
program p is generated by making a single syntactic change to
p. The rules of generating FOMs is called first-order mutation
operators FOP .
Definition 2 (HOM). A Higher-Order Mutant (HOM) of a
program p is generated from p by applying k operators from
FOP . This HOM is said to be a kth order mutant of p and
is recorded as k-HOM.

Note that in most of the previous studies [33], the k
operators are applied in k different statements, which HOMs
mutate on multiple statements. Also, HOMs only mutating on
single statements are another kind of HOMs. In this study, to
reveal the mutant bias more accurately in MBFL, we adopt
the first kind of HOMs to expand the mutant space in a single
statement.

Figure 1 shows an example of the FOM and two types of
the HOM. The original program is mutated into three FOMs
(FOM1, FOM2, FOM3). Specifically, FOM1 and FOM2

mutate the statement s2, while FOM3 mutates the statement
s3. Then, HOM1 is formed by FOM1 and FOM2 that mutate
only on s2, while HOM2 is formed by FOM2 and FOM3

that mutate both on s2 and s3.
In higher-order mutation testing, HOMs are considered

more complex faults. Therefore they can solve the complex
mutation testing problems. For example, firstly, HOMs can be
used to reduce testing costs [22], [34], [35]. Secondly, HOMs
can be applied to evaluate the quality of test suites [36] and
test data generation [37]. Thirdly, some researchers employed
HOMs for coupling effect analysis [19], [38] and fault local-
ization [39], [40].

III. RESEARCH MOTIVATION

In this section, we first present a motivation example to
illustrate the mutant bias in traditional mutation-based fault
localization techniques. Based on it, we discuss the motivation
of our work by demonstrating the problem of how the accuracy
of MBFL techniques is affected by mutant bias. Then we
analyze the root cause of this problem and introduce our
solution.

A. Motivation Example

Table III shows an example of how the mutant bias influ-
ences the performance of MBFL. The program is the one that
with real faults from Codeflaws [41]. The program contains
17 statements where the statement s7 (the correct code should
be “if(i%2)”) and the statement s12 (the correct code should
be “if(false)”) are both faulty. In this example, we assume that
MBFL has two FOMs per statement, resulting in a total of 20
FOMs. The test suite for this program contains 14 passed test
cases and 37 failed test cases.



TABLE III
A MOTIVATION EXAMPLE

Mutant Metallaxis Delta4Ms
Program

akf akp anf anp Sus Stmt.
Sus Rank M Stmt.

Sus Rank

s1
s2
s3

int main(int argc, char *argv[]){
int n,a,b,c,sum;
scanf(”%d%d%d%d”, &n,&a,&b,&c);

FOM1: int → short int 27 0 10 14 0.85
s4 int count =0;

FOM2: int → char 25 0 12 14 0.82 0.85 5 0.84 0.01 8

s5 int i,j;
FOM3: ++ → +=2 37 0 0 14 1.00
FOM4: <= → < 11 0 26 14 0.55

HOM1: ++ → +=2
<= → <

11 0 26 14 0.55
s6 for(i=0;i<=a;i++){

HOM2: ++ → +=2
<= → == 12 12 25 2 0.40

1.00 1 0.62 0.38 2

FOM5: if(()) → if(!()) 6 0 31 14 0.40
FOM6: / → + 0 4 37 14 0.00

HOM3: if(()) → if(!())
/ → + 0 4 37 14 0.00

s7 if(i/2) //fault1. Correct: if(i%2)

HOM4: if(()) → if(!())
/ → * 10 0 27 14 0.52

0.40 9 0.23 0.29 5

s8 continue;
FOM7: ++ → +=2 9 0 28 14 0.49
FOM8: <= → == 5 0 32 14 0.37

HOM5: ++ → +=2
<= → == 3 6 24 8 0.16

s9 for(j=0;j<=b;j++）{
HOM6: ++ → −−

<= → == 30 6 7 8 0.82

0.49 7 0.46 0.36 4

s10 sum=0;
FOM9: 1 → -1 9 0 28 14 0.49
FOM10: * → / 37 0 0 14 1.00

HOM7: 1 → -1
* → / 10 0 27 14 0.52

s11 sum=(n)-(int)(i*0.5)-(j*1);

HOM8: - → *
* → / 9 0 28 14 0.49

1.00 1 0.63 0.37 3

FOM11: if(() → if(!()) 28 0 9 14 0.87
FOM12: <→ != 6 0 31 14 0.40

HOM9: if(()) → if(!())
<→ >= 0 0 37 14 0.00

s12 if(sum<0) //fault2. Correct: if(false)

HOM10: if(()) → if(!())
<→ <= 6 0 31 14 0.40

0.87 4 0.42 0.45 1

s13 continue;
FOM13: / → % 25 0 12 14 0.82
FOM14: <= → != 15 6 22 8 0.54

HOM11: / → *
if(()) → if(!()) 22 6 15 8 0.68

s14 if((sum%2 ==0)&&((sum/2)<=c))

HOM12: && → ||
<= → >= 20 10 17 4 0.60

0.82 7 0.66 0.16 6

FOM15: −− → +=2 9 0 28 14 0.49
s15 count−−;}}

FOM16: −− → -=2 5 0 32 14 0.37 0.49 7 0.43 0.06 7

FOM17: count → count*-1 0 14 37 0 0.00
s16 printf(”%d”,count);

FOM18: count → count*2 0 14 37 0 0.00 0.00 10 0.00 0.00 9

FOM19: return 0 → return NULL 37 0 0 14 1.00
s17 return 0;}

FOM20: return 0 → return -1 37 0 0 14 1.00 1.00 1 1.00 0.00 9

The traditional MBFL Metallaxis executes the program
against the test suite and we display the four parameters
〈akf , akp, anf , anp〉 in the section of “Mutant”. In this exam-
ple, we use Ochiai [25] as the MBFL formula and the mutants’
suspiciousness is in the column Sus of “Mutant” section.

For Metallaxis, it assigns the maximum value of mutant
suspiciousness to the statements. For example, statement s4
takes 0.85 as the the suspiciousness of s4. Then, Metallaxis
ranks the statements based on the suspiciousness and the faulty
statements s7 and s12 in 9-th and 4-th places, respectively.

For the traditional MBFL technique Metallaxis, the suspi-
ciousness of statements is assigned by the maximum value of
the mutants’ suspiciousness. This kind of calculation method
hinders the difference between mutants from the correct state-
ments and faulty statements. In the study of Moon et al. [11],
they observed that the failed test cases are more likely to pass
on the mutants from the faulty statements and the passed
test cases are more likely to fail on the mutants from the
correct statements. This means that the mutants on the faulty
statements are more “value” than the correct statements. For



example, FOM5 and FOM6 have large different value of
suspiciousness for s6, while FOM1 and FOM2 have closer
suspiciousness for s1. The Metallaxis with fewer mutants
cannot perceive this kind of difference and we introduce
HOMs to discover it.

B. How Delta4Ms alleviate the impact

In this section, we show an idea to inspire Delta4Ms. Our
idea uses the mutant set of one statement as the reference to
adjust the suspiciousness scores of the statement, which aims
to alleviate the impacts of mutant bias.

We consider the calculated suspiciousness of the statement
as a superposition of the desired suspiciousness component
(that reflects the real probability of the statement being faulty)
and the false suspiciousness component (that comes from
the impact of mutant bias). We capture the latter by taking
the average of the mutants’ suspiciousness from the same
statement. We remove it from the calculated suspiciousness
of the statement to restore the desired suspiciousness. In the
“Delta4Ms” section of Table III, we present the detailed result
of our solution.

In Table III, Delta4Ms first generates HOMs on single state-
ments. For example, the statement s6 generates two HOMs
(HOM1 and HOM2), where HOM1 combined FOM3 and
FOM4, HOM2 combined FOM4 and the mutant (<= →
==). The statements s4, s15, s16 and s17 only have FOMs due
to the limits of the mutation positions.

Next, Delta4Ms calculates the average mutants’ suspicious-
ness as the mutant bias for the statements. For example,
the statement s6 has four mutants (FOM3, FOM4, HOM1,
HOM2) and the suspiciousness of them are 1.00, 0.55, 0.55,
and 0.40, respectively. The average of the suspiciousness is
calculated as 1.00+0.55+0.55+0.40

4 = 0.62. Similarly, the col-
umn of “M” also lists out the mutant bias of other statements.
We can find that the mutant bias for each statement is different.

Using the mutant bias as the references, we contrast the
suspiciousness scores calculated in Metallaxis with them to
restore the desired suspiciousness scores. In particular, we
subtract them from the corresponding calculated suspicious-
ness scores in Metallaxis to compute the differences, which
are shown in the column “Stmt.” of the “Delta4Ms” section.
We can find that Delta4Ms assigns the faulty statements s7
and s12 with the suspiciousness of 0.29 and 0.45. Therefore,
Delta4Ms improves Metallaxis by raising the rank of s7 from
9-th to 5-th, and raising the rank of s12 from 4-th to 1-st,
respectively.

Delta4Ms captures the mutant bias by considering more
mutants. For the statements s6 and s11, they both rank at the
top 1 in Metallaxis and with lower ranks in Delta4Ms after
removing the mutation biasM. The reason is that the mutants
generated from correct statements with similar behavior leads
to similar suspiciousness for the mutants. As shown in Ta-
ble III, s6 has three mutants (FOM4, HOM1, HOM2) with
similar suspiciousness (i.e., 0.55, 0.55, and 0.40), and with a
mutant FOM3 different from them. Therefore, the bias M

(0.62) should be closer to the maximum value of the mutant
suspiciousness (1.00).

From another aspect, for the faulty statements s7 and s12,
Delta4Ms improves their ranking of them. It is matched to
the idea that “mutants are a potential fix of the program [1]”,
which leads to more differences in the mutants from the same
statement. As shown in Table III, s7 has four mutants (FOM5,
FOM6, HOM3, and HOM4) with different suspiciousness
(0.40, 0.00, 0.00, and 0.52). Among them, the suspiciousness
of FOM6 and HOM3 are significantly different from FOM5

and HOM4, which can result the bias M (0.23) far from the
suspiciousness of HOM4 (0.52). Therefore, the relative rank
of the faulty statements can be improved by removing the
mutant bias.

IV. OUR METHOD

In this section, we present the model of Delta4Ms, which
can capture and remove the impact of mutant bias on the
performance of MBFL.

A. Problem Settings

As mentioned in Section III, the mutant difference in-
fluences the performance of traditional MBFL techniques.
While traditional MBFL techniques generate a few mutants
(i.e., FOMs) that cannot reveal the real bias caused by mu-
tants. Therefore, we introduce higher-order mutants (multiple
changes in a single statement) to jointly calculate the mutant
bias.

Assume that a program P = 〈s1, s2, · · · , sn〉 with n
statements. We further denote the corresponding mutants (i.e.,
FOMs and HOMs) generated from each statement si as
M(si) = 〈mi1,mi2, · · · ,mik〉.

Suppose that each fault in the program has been assessed by
the MBFL technique and we denote the suspiciousness score
computed by the technique for si as Si, where i ∈ [1, n] is
the index of the program statements.

As the settings mentioned previously, we model the suspi-
ciousness Si as a superposition of two kinds of signals: Di

and Mi.

Si = Di +Mi (1)

We present Equation (1) to detail the modeling procedure.
In Equation (1), Si denotes the suspiciousness of the statement
si computed by the MBFL techniques with both FOMs and
HOMs. That is Si = f (Sm1

,Sm2
, · · · ,Smk

), where the func-
tion f is the method of calculating the values from mutants’
suspiciousness Smk

. Traditional MBFL techniques takes the
maximum value of the mutants’ suspiciousness (Function f is
Maxing). In the model, Si is computed as the sum of Di and
Mi. Di denotes the observable suspiciousness signal beyond
mutant bias, and Mi indicates the impact of mutant bias. We
use all mutants generated from the statement si to approximate
Mi. In single processing, Mi is referred to as a false signal,
and Di is the desired signal. To assess the statement si, we
compute Di from Si −Mi.



FOM1FOM1
FOM2FOM2···

HOM1HOM1
HOM2HOM2···

fault

Traditional MBFL Process

FOMpFOMp

HOMqHOMq

DiDiMiMisisi

SiSi

SiSi

×

Fig. 2. Workflow of Delta4Ms

B. Delta for mutants (Delta4Ms)

Figure 2 shows the workflow of our proposed Delta4Ms,
where the upper part (with background color) is the con-
ventional solution that only adopts FOMs to compute the
suspiciousness Si. The traditional MBFL technique locates the
fault according to the ranking of the suspiciousness.

In our solution, we do not rank the suspicious program
entities by Si (i.e., ”×” is marked on the dashed arrow in
Figure 2). Rather, Delta4Ms first captures the mutant bias
M from two kinds of mutants (FOMs and HOMs). Then we
calibrate Si (both obtained from FOMs and HOMs) to Di from
removing the Mi and use Di to rank program entities. Each
step of the Delta4Ms is illustrated in the following sections.

Definition 1 (Impact of Mutant Bias): For a statement
s, we parameterize Equation( 1) as Si = Di +Mi(msi) to
express that Si consists of two components: Di is the observed
failures on si, and Mi(msi) is the magnitude brought by the
mutant bias from the mutant set msi (all mutants in msi are
generated from si), which is also defined the impact of mutant
bias in this study.

Our goal is to rank all the statements to reflect the extent
of their suspiciousness, which is related to the fault. For
this purpose, we compare two statements si and sj by their
suspiciousness Di and Dj . Thus, we define the following term:

Mi(msi) = Si(msi)−Di

= f (Smx
|mx ∈ msi)−Di

(2)

where the function f is the method of obtaining the state-
ment’s suspiciousness from mutants’ suspiciousness. If C is a
constant, then f (C) = C.

To denote the difference between individual mutant mx and
the real suspiciousness Di, we define δmx as:

δmx
= Smx

−Di (3)

Based on Equation (2) and Equation (3), the mutant bias
Mi(msi) is represented by:

Mi(msi) = f (Smx
|mx ∈ msi)−Di

= f (δmx
+Di|mx ∈ msi)−Di

= f (δmx
|mx ∈ msi) + f (Di)−Di

= f (δmx
|mx ∈ msi) +Di −Di

= f (δmx
|mx ∈ msi)

(4)

Then our goal is to calculate the mutant difference δmj in
the mutant set msi. For this purpose, we define the following
term to describe the average difference between any two
mutants in msi:

δmsi
mx,my =

∑
mx,my∈msi

δmx
− δmy

k2
(5)

where k = |msi| is the number of mutants in msi.
Then, we take Equation (3) into Equation (5), introducing

to:

δmsi
mx,mx =

∑
mx,my∈msi

[(Smx
−Di)− (Smy

−Di)]

k2

=
1

k2
·

∑
mx,my∈msi

(Smx − Smy )

=
1

k2
·
∑

mx∈msi

k · Smx
−

∑
my∈msi

Smy


=

1

k2
·

 ∑
mx∈msi

k · Smx −
∑

my∈msi

k · Smy


=

∑
mx∈msi

Smx

k
−

∑
my∈msi

Smy

k

(6)

The law of large numbers states that as the size of samples
grows, their mean gets closer to the average of the whole
population. Therefore, the mutant difference can be approx-
imated by the mean value of the mutant difference in msi,

δmx
≈

∑
my∈msi

Smy

k . As a result, we deduce Equation (4) as
follows:

Mi(msx) = f
(
δmy
|my ∈ msi

)
≈ f


∑

my∈msi

Smy

k
|my ∈ msi


=

∑
my∈msi

Smy

k

(7)

Therefore, we have shown how to generate a ranking list of
suspicious program elements in our model.



C. Why Using Higher-Order Mutants

As defined in Section IV-B, the mutant biasMi is captured
from the mutants from the same statement si. According to the
law of large numbers, the greater the number of mutants used,
the higher the probability that the mean of the suspiciousness
will be close to the expected value of mutant bias. We
introduce HOMs on the single statements to extend the mutant
space of traditional MBFL techniques for calculating mutant
bias precisely.

V. EXPERIMENTAL SETUP

A. Research Questions

To evaluate the effectiveness of Delta4MS, we investigate
the following three research questions:
• RQ1: How does Delta4MS perform in the single-fault

programs in terms of fault localization effectiveness?
• RQ2: How does Delta4MS perform in the multiple-fault

programs in terms of fault localization effectiveness?
• RQ3: How much execution cost does Delta4MS need

when compare to SBFL and MBFL techniques?
RQ1 and RQ2 are designed to evaluate the fault localization

effectiveness of Delta4MS in terms of the EXAM , Top-N ,
and MAP metrics. We compare Delta4MS with four SBFL
techniques (i.e., GP13 [24], Ochiai [25], Op2 [26], and Taran-
tula [27]) and three MBFL techniques (i.e., MUSE [11], Metal-
laxis [13], and MCBFL-hybrid-avg [20], ). RQ3 is designed to
evaluate the efficiency of Delta4M when compared to SBFL
and MBFL techniques. We measure the mutation execution
cost in terms of the MTP metric to compare the efficiency of
these techniques.

In our experiments, we use four suspiciousness formulas
(i.e., GP13 [24], Ochiai [25], Op2 [26], and Tarantula [27])
as SBFL techniques and MBFL formulas. Of these formulas,
GP13 and Op2 are proven to be maximal in theory [42].
Besides, Perez et al. [43] empirically showed that Op2 is
optimal to localize a single fault. Note that we additionally
add Ochiai and Tarantula, since they have also been widely
studied in previous studies on fault localization [25], [27].

B. Subject Programs

We conduct the experiments on Codeflaws benchmark [41].
Codeflaws is a large-scale benchmark of real faults on C
programs. These faults are diverse and relatively hard to
expose [44], [45]. Codeflaws consists of 3,902 real fault
programs in 7,436 programs selected from the Codeforces
online database2. Note that each fault in this benchmark
has a unique rejected ‘faulty’ submission and the accepted
‘corrected’ submission. This means each program is differ-
ent from the others. We excluded the programs where the
failures cannot be detected and the programs that suffered
from running-time errors. Finally, we considered 317 different
programs. Of these programs, 160 programs are single-fault
programs and 157 programs are multiple-fault programs.

2https://codeforces.com/

C. Configuration

In our study, we use the GNU gcov tool [46] to collect
coverage information. Then we develop a tool to generate
FOMs and HOMs, which are publicly available in Github
repositories3. In our tool, we employ mutation operators
suggested by Agrawal et al. [47]. Table I lists ten typical
mutation operators. We choose to generate HOMs with 2-order
(2-HOMs for short) since the study of Nguyen et al. [48] and
Wong et al. [49] indicated that the lower order of mutants has
more effective in mutation testing. Moreover, 2-HOMs have
been studied in previous studies [50], [51].

Due to the huge space of HOMs, we have tested the
number of HOMs from one to five times that of FOMs
in our pre-experiments. The results showed that HOMs has
similar fault localization effectiveness for different number of
HOMs. Considering the huge computation cost of MBFL, we
generated the same number of HOMs as FOMs. In summary,
we generate 42,861 FOMs and 42,975 HOMs for all of the
programs.

All experiments were performed on four machines (Intel i5
Xeon e7-480, 2GHz CPU, and 32GB of memory) with Ubuntu
Linux 4 64 bits.

D. Evaluation Metrics

We adopt four performance metrics (i.e., EXAM , Top-N ,
MAP and MTP ) to evaluate the fault localization effective-
ness of our proposed approach, since these metrics have been
widely used in previous fault localization studies [52], [53].

1) EXAM: This metric measures the percentage of program
elements (i.e., statements in our study) that need to be in-
spected by developers until finding the exact faulty element.
EXAM is a commonly used metric for fault localization
techniques, and a lower EXAM value indicates a better fault
localization technique [52].

The EXAM metric is formulated as:

EXAM =
rank

Number of executable statements
(8)

The numerator in Equation (8) is the ranking of the faulty
statement. The denominator is the total number of statements
that need to be checked. Specifically, rank is defined as:

rank =
(i+ 1) + (i+ j)

2
(9)

In Equation (9), i is the number of non-faulty statements
whose suspiciousness value is higher than the faulty statement,
and j is the number of statements that share the same
suspiciousness value with the faulty statement. To break the
tie, we take the average of the first (i + 1) and last (i + j)
ranks to determine the rank of the faulty statement.

3https://github.com/759031482/DNMBFL

https://codeforces.com/


2) Top-N: This metric counts the number of faults localized
within the top N program elements among all candidates [54].
In the survey of Kochhar et al. [55], 73.58 % of developers
only inspect Top-5 program elements and almost all devel-
opers agree that Top-10 elements are the upper bound for
inspection within their acceptability level. Therefore, following
the previous study [54], [56], [57], we use 1, 3, 5 for the
value of N . Note that if two statements share the same
suspiciousness score, we break the tie by computing the mean
value of their ranks (as Equation (9)). A fault localization
technique with higher Top-N is better than others.

3) Mean Average Precision (MAP): This metric evaluates
ranking statements in information retrieval [58]. It is the mean
of the average precision of all faults. AP (Average precision)
is defined as follows:

AP =

M∑
i=1

P (i)× pos(i)
Number of faulty statements

(10)

In Equation (10), i is a rank of the method, M is total
number of statements in the ranked list, and pos(i) is a
Boolean function, while pos(i) = 1 indicates the ith statement
is faulty, otherwise pos(i) = 0. P (i) is the precision of
localization at each rank i, which is defined as follows.

P (i) =
Number of faulty statements in top i ranks

i
(11)

MAP is the mean of AP (Average Precision) values com-
puted for a set of faults. We calculate MAP for faults belong-
ing to the same project. A higher MAP value demonstrates a
better technique.

4) Mutant-Test-Pair (MTP): This metric measures the mu-
tant execution cost of MBFL and has been used in previous
studies [14], [59], [60]. The idea of MTP is that the number of
mutation execution is linked to the computational cost required
to obtain the rank of statements [61]. Compared with the actual
run-time cost, the MTP metric has the advantage of avoiding
the influence of the run-time environment.

A MTP counts the number of mutant executions on the
test cases and the technique with lower MTP indicates it has
better efficiency.

VI. EXPERIMENTAL ANALYSIS

A. Answer for RQ1

RQ1: How do Delta4Ms perform in the single-fault pro-
grams in terms of fault localization effectiveness?

To answer RQ1, we collect the EXAM , Top-N , and MAP
of single-fault programs for different techniques. We compare
Delta4Ms with four SBFL techniques and three MBFL tech-
niques, In addition, we display the results with four MBFL
formulas.

In terms of the EXAM metric, Delta4Ms localizes more
faults with fewer inspected program statements than SBFL
and MBFL. Figure 3 shows the effectiveness of Delta4Ms
and other techniques. The X-axis represents the cumulative
percentage of code to be examined and the Y -axis represents

the total number of faults for which fault can be detected
by examining this percentage of code. From Figure 3(a),
Delta4Ms can discover 85.4% of the faults by examining only
30% of statements with the GP13 formula, while Metallaxis
and MCBFL-hybrid-avg can discover only no more than
72.1% faults from the same percentage of code. By exam-
ining 30% of statements with the Ochiai formula, Delta4Ms
technology can discover 85.3% of the faults, while Metallaxis
and MCBFL-hybrid-avg can only discover 71.9% of the faults.
Also, Delta4Ms localize more faults than SBFL technique and
MUSE with 30% examined statements. Moreover, in most
cases, we can find from the results on Op2, and Tarantula,
Delta4Ms are more effective with less percentage of the
examined statements (see Figure 3(c) and Figure 3(d)).
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Fig. 3. Number of statements need to be examined to locate the faults on
four formulas in single-fault programs

In terms of the metrics of Top-N and MAP , Delta4Ms
again outperform SBFL and three MBFL techniques. Table IV
shows Delta4Ms locate a fault statement at the Top-1 , Top-3 ,
Top-5 ranks for 26, 65, 89 of the target faults on GP13
formula, separately. Also, Delta4Ms has the highest MAP of
0.350 at the GP13 formula. Moreover, Delta4Ms places more
faults at the top ranks in Ochiai, Op2, and Tarantula formulas
than SBFL and MBFL techniques.

We further analyze the fault localization accuracy improve-
ment by Delta4Ms on single-fault programs. As shown in Ta-
ble V, Delta4Ms improves the accuracy of SBFL technique by
122.9% at the metric of MAP with GP13 formula. Moreover,
by comparing Delta4Ms with all techniques under a specific
formula, the average improvement for MAP ranges from
91.6% to 178.2%. Later, by comparing all formulas across all
Delta4Ms with a specific technique, the average improvement
ranges from 70.5% to 225.4%. On average, Delta4Ms can
improve the fault localization accuracy by 134.9%.

To further determine the statistical significance between
Delta4Ms and SBFL, MBFL techniques, and mutant gen-



TABLE IV
Top-N AND MAP OF DELTA4MS AND OTHER TECHNIQUES ON FOUR

FORMULAS IN SINGLE-FAULT PROGRAMS

Formula Technique Top MAP1 3 5

GP13

SBFL 6 18 26 0.157
MUSE 0 1 12 0.119
Metallaxis 0 15 59 0.166
MCBFL-hybrid-avg 9 21 44 0.189
Delta4Ms 26 65 89 0.350

Ochiai

SBFL 5 19 26 0.155
MUSE 0 1 12 0.119
Metallaxis 0 15 59 0.166
MCBFL-hybrid-avg 11 26 53 0.217
Delta4Ms 45 78 94 0.436

Op2

SBFL 6 18 26 0.157
MUSE 0 1 12 0.119
Metallaxis 0 15 59 0.169
MCBFL-hybrid-avg 10 22 45 0.197
Delta4Ms 15 57 82 0.297

Tarantula

SBFL 13 42 60 0.271
MUSE 0 1 12 0.119
Metallaxis 1 18 61 0.176
MCBFL-hybrid-avg 22 50 82 0.317
Delta4Ms 51 81 94 0.460

TABLE V
ACCURACY IMPROVEMENT(IN SINGLE FAULT) FOR EACH TECHNIQUES ON

EACH FORMULAS

GP13 Ochiai OP2 Tarantula Avg.
SBFL 122.9% 181.3% 89.2% 69.6% 115.7%
MUSE 195.3% 267.8% 150.6% 288.1% 225.4%
Metalalaxis 111.4% 162.7% 75.7% 161.7% 127.9%
MCBFL-
hybrid-avg 85.2% 100.9% 50.8% 45.2% 70.5%

Avg. 128.7% 178.2% 91.6% 141.1% 134.9%

eration techniques, we collect the EXAM of all program
versions for different techniques and then employ the one-
tailed wilcoxon signed-rank test [62] at a confidence level
of 95%. The p-value less than 0.05 indicates Delta4Ms is
significantly better than other techniques. Table VI shows the
testing results on EXAM of Delta4Ms with SBFL and MBFL
techniques. We can find that the p-value of Delta4Ms are
all less than 0.05 compared with SBFL, Metallaxis, MCBFL-
hybrid-avg, and four mutant generation techniques on GP13,
Ochiai, Op2, and Tarantula formulas.

In summary, Delta4Ms can localize more faults than SBFL,
MBFL, and mutant generation techniques in terms of EXAM ,
Top-N and MAP metrics. The statistical testing can also
shown that Delta4Ms significantly improve the other tech-
niques.

TABLE VI
THE p-value OF DELTA4MS AND OTHER TECHNIQUES ON FOUR

FORMULAS IN SINGLE-FAULT PROGRAMS

Technique GP13 Ochiai Op2 Tarantula

SBFL 2.0E-11 1.4E-14 1.3E-10 5.1E-09
MUSE 3.6E-08 3.0E-09 9.4E-07 2.0E-09
Metallaxis 6.7E-09 1.2E-11 3.8E-07 1.1E-18
MCBFL-hybrid-avg 3.5E-07 5.1E-08 2.8E-05 2.7E-06

B. Answer for RQ2

RQ2: How does Delta4Ms perform in the multiple-fault
programs in terms of fault localization effectiveness?

To answer RQ2, we also use the EXAM , Top-N , and MAP
to evaluate the fault localization effectiveness of Delta4Ms,
SBFL, and MBFL techniques on multiple-fault programs.

In terms of EXAM , Delta4Ms localizes more faults within
fewer program statements inspected. Figure 4 shows the effec-
tiveness of Delta4Ms and other techniques on multiple-fault
programs. In Figure 4(a), in GP13 formula, Delta4Ms can
discover 52.5% of the faults by examining 20% of statements,
while Metallaxis and MCBFL-hybrid-avg can discover 47.4%
and 38.9% of all faults. Also, in Figure 4(b), Delta4Ms can
discover 54.9% of the faults by examining 20% of statements,
and the other techniques can discover faults no more than
47.9% at the same percentage of code. Similarly, Delta4Ms
are more effective in the formula of Op2 and Tarantula (see
Figure 4(c) and Figure 4(d)).
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Fig. 4. Number of statements need to be examined to locate the faults on
four formulas in multiple-fault programs

In terms of the metrics Top-N and MAP , Delta4Ms again
localizes faults more precisely than SBFL and three MBFL
techniques. Table VI-B shows the fault localization results
of these techniques. In GP13 formula, Delta4Ms locates 64,
117, and 149 faults at Top-1 , Top-3 , Top-5 rank, which is
significantly better than other techniques. Moreover, Delta4Ms
localizes faulty statements more precisely with a higher MAP
of 0.697. Additionally, in the rest formulas (i.e., Ochiai, Op2,
Tarantula), Delta4Ms also perform better than SBFL, MBFL
techniques.

Table VIII also shows the accuracy improvement for each
technique on each formula compared with Delta4Ms at MAP
on multiple-fault programs. The last column shows that, by
comparing Delta4Ms with all formulas under a specific tech-
nique, the average improvement ranges from 57.0% to 161.3%.
At the last row, by comparing Delta4Ms with all techniques



with a specific formula, the average improvement ranges from
65.2% to 129.2%. Delta4Ms can improve fault localization
accuracy by 100.9% on average on multiple-fault programs.

Table IX shows the result of one-tailed wilcoxon
signed-rank test results on the EXAM between Delta4Ms
and SBFL, MBFL techniques in multiple-fault programs. We
can find that, in most cases, the p-values are less than 0.05 and
the EXAM of Delta4Ms is significant better than the SBFL
and MBFL techniques on four formulas.

In summary, Delta4Ms can performs better in terms of
EXAM , Top-N , and MAP on multiple-fault programs. Sta-
tistical testing indicates that there is a significant difference
between Delta4Ms and SBFL, MBFL techniques.

TABLE VII
Top-N AND MAP OF DELTA4MS AND OTHER TECHNIQUES ON FOUR

FORMULAS IN MULTIPLE-FAULT PROGRAMS

Formula Technique Top MAP1 3 5

GP13

SBFL 13 40 72 0.336
MUSE 1 23 57 0.281
Metallaxis 5 58 108 0.381
MCBFL-hybrid-avg 15 67 106 0.436
Delta4Ms 64 117 149 0.697

Ochiai

SBFL 16 48 81 0.367
MUSE 1 23 57 0.281
Metallaxis 5 59 109 0.382
MCBFL-hybrid-avg 17 74 120 0.468
Delta4Ms 92 136 161 0.831

Op2

SBFL 13 40 72 0.337
MUSE 1 23 57 0.281
Metallaxis 5 57 111 0.388
MCBFL-hybrid-avg 16 69 109 0.445
Delta4Ms 40 104 135 0.582

Tarantula

SBFL 31 72 99 0.478
MUSE 1 23 57 0.281
Metallaxis 5 60 114 0.390
MCBFL-hybrid-avg 24 83 132 0.518
Delta4Ms 92 135 158 0.827

TABLE VIII
ACCURACY IMPROVEMENT(IN MULTIPLE FAULT) FOR EACH TECHNIQUES

ON EACH FORMULAS

Technique GP13 Ochiai OP2 Tarantula Avg.
SBFL 107.1% 126.2% 72.9% 73.0% 94.8%
MUSE 148.0% 195.7% 107.1% 194.3% 161.3%
Metalalaxis 83.0% 117.3% 50.0% 112.3% 90.6%
MCBFL-
hybrid-avg 60.0% 77.6% 30.7% 59.6% 57.0%

Avg. 99.5% 129.2% 65.2% 109.8% 100.9%

TABLE IX
THE p-value OF DELTA4MS AND OTHER TECHNIQUES ON FOUR

FORMULAS IN MULTIPLE-FAULT PROGRAMS

Technique GP13 Ochiai Op2 Tarantula

SBFL 5.6E-18 8.6E-18 1.5E-14 1.5E-10
MUSE 2.7E-03 5.5E-04 7.4E-03 8.4E-04
Metallaxis 1.1E-12 8.3E-30 5.0E-11 2.3E-25
MCBFL-hybrid-avg 3.6E-13 7.4E-19 8.2E-06 1.5E-11

C. Answer for RQ3

RQ3: How much execution cost does Delta4Ms incur,
compare to MBFL techniques?

To answer RQ3, we use the MTP metric to measure the
mutation execution cost of each MBFL and mutant generation
technique. Figure 5 shows the cost of Delta4Ms and MBFL
techniques in terms of MTP values in single-fault programs
and multiple-fault programs. The X-axis shows different
techniques and the Y -axis is the sum of all versions’ MTP
measured by millions. From Figure 5(a), Delta4Ms costs the
most since it generates both FOMs and HOMs for calculating
the mutant bias of the program, which has twice the cost of
the MBFL techniques. Also, the three MBFL techniques (i.e.,
MUSE, Metallaxis, and MCBFL-hybrid-avg) only generate
FOMs.

Table X further presents the detailed MTP of each tech-
niques. From Table X, We can see that Delta4Ms is 101%
less efficient than MBFL techniques (MUSE, Metallaxis, and
MCBFL-hybrid-avg) both in single-fault and multiple-fault
programs, but Delta4Ms improve the fault localization effec-
tiveness of these techniques. Therefore, Delta4Ms is a trade-
off technique that obtains better fault localization effectiveness
by losing some efficiency of running this technique. Therefore,
there still exists room for boosting the efficiency of Delta4Ms.

In summary, Delta4Ms costs more computational cost than
MBFL but with a significant improvement in these techniques.
Also, there still exists room for reducing the computational
cost of Delta4Ms.
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Fig. 5. MTP of Delta4Ms and other MBFL techniques on four formulas

TABLE X
THE EFFICIENCY AND EFFECTIVENESS OF DELTA4MS AND OTHER MBFL

TECHNIQUES

Programs Technique MTP Efficiency%

Single Fault

MUSE 1,257,377 -101%
Metallaxis 1,257,377 -101%
MCBFL-hybrid-avg 1,257,377 -101%
Delta4Ms 2,526,776 -

Multi Faults

MUSE 1,097,158 -101%
Metallaxis 1,097,158 -101%
MCBFL-hybrid-avg 1,097,158 -101%
Delta4Ms 2,205,349 -



VII. CONCLUSION

In this paper, we investigate the impacts of mutant char-
acteristics of a single statement on the accuracy of MBFL
techniques, and we formally formulate the problem of mutant
bias. We present a theoretical model Delta4Ms to capture
the impacts of the MBFL technique and remove them. We
evaluate Delta4Ms by conducting an empirical experiment on
320 versions of programs from Codeflaws. The experimental
results demonstrate that Delta4Ms can significantly improve
the accuracy of MBFL techniques by 134.9% on single-fault
programs and 100.9% on multiple-fault programs in terms
of the metric MAP . In addition, Delta4Ms perform better
in terms of the metrics EXAM , mathitTop-N than SBFL
and MBFL techniques (i.e., MUSE, Metallaxis, and MCBFL-
hybrid-avg).

In the future, we want to evaluate our method on other
realistic subject programs and we want to investigate more
mutant reduction techniques to further improve our model.
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