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a b s t r a c t

A code comment generation system can summarize the semantic information of source code and
generate a natural language description, which can help developers comprehend programs and reduce
time cost spent during software maintenance. Most of state-of-the-art approaches use RNN (Recurrent
Neural Network)-based encoder–decoder neural networks. However, this kind of method may not
generate high-quality description when summarizing the information among several code blocks that
are far from each other (i.e., the long-dependency problem). In this paper, we propose a novel Semantic
CNN parser SeCNN for code comment generation. In particular, we use a CNN (Convolutional Neural
Network) to alleviate the long-dependency problem and design several novel components, including
source code-based CNN and AST-based CNN, to capture the semantic information of the source code.
The evaluation is conducted on a widely-used large-scale dataset of 87,136 Java methods. Experimental
results show that SeCNN achieves better performance (i.e., 44.69% in terms of BLEU and 26.88% in terms
of METEOR) and has lower execution time cost when compared with five state-of-the-art baselines.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

During the process of software development and maintenance,
evelopers spend nearly 60% time on source code comprehen-
ion (Xia et al., 2017). Code comments, which describe a piece
f code by natural language, are the most intuitive and effective
ay for the developers to understand software code. High-quality
ode comments play an important role in software maintenance
nd reuse. Unfortunately, due to tight project schedule (Hu et al.,
018a), a large number of software projects do not provide com-
lete comments, or some comments are outdated due to software
pdates. This can significantly reduce the readability and main-
ainability of the program. Moreover, writing code comments is
lso a tedious and time-consuming task in software development,
nd requires a lot of effort from the developers.
Automatic code comment generation techniques are effec-

ive ways to address those issues. Given a code snippet, a code
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comment generation system can generate the target code com-
ment in natural language. Previous code comment generation
approaches can be classified into two categories: template-based
approaches and AI (Artificial Intelligence)-based approaches. The
template-based approaches usually predefine a set of sentence
templates and fill them by the content of the target code seg-
ment (Haiduc et al., 2010b,a; Rodeghero et al., 2015; Moreno
et al., 2013). Although significant progress has been made based
on keywords and sentence templates selection, these template-
based approaches still have limitations (LeClair et al., 2019).

With the development of AI-based approaches, more studies
tend to apply the encoder–decoder framework (Sutskever et al.,
2014) to code comment generation. In this framework, the RNNs
are usually served as the encoder and the decoder. When applied
to code comment generation, it takes the source code as the
input sequence and generates the code comment as the output
sequence (Iyer et al., 2016). However, as a strict structural text,
source code contains rich structural information, which is impor-
tant for program modeling (Sun et al., 2019b). To address this
issue, state-of-the-art approaches generate the comment based
on the Abstract Syntax Tree (AST) of the code via RNNs (Hu et al.,
2018a; LeClair et al., 2019).

Based on our analysis, these approaches still face two prob-
lems. The first problem is the long dependency problem. The
code comment may summarize the information among several
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ode blocks that are far from each other. The second problem is
he semantics encoding problem. Existing AST-based approaches
erialize the AST into a sequence of tokens via a traversal method
nd extract the features by RNNs. However, RNNs are designed
or encoding sequences, which still cannot capture the structural
emantics well.
In this paper, we propose a novel Semantic CNN parser SeCNN

o generate code comments for Java methods, which are func-
ional units of Java programming language, and we only choose
he first sentence of Javadoc as the comment of the corresponding
ava method, because it typically describes the functionalities of
ava methods according to Javadoc guidance. Since CNNs are able
o capture features of code effectively among different blocks by
liding windows (Sun et al., 2019b), SeCNN uses a CNN, which
captures features effectively among different code blocks, to al-
leviate the long-dependency problem (Bengio et al., 1994). Fur-
thermore, we design several novel components, including source
code-based CNN and AST-based CNN, an Improved Structure-
Based Traversal (ISBT) method to encode the semantics of the
source code, and identifier split via camel casing1 to alleviate the
ut-of-vocabulary problem. SeCNN uses two Convolutional Neu-
al Networks (CNNs) to encode semantic information of source
ode. One CNN is used to extract lexical information from code
okens, and another CNN is used to extract syntactic information
rom ASTs. To generate the code comment, SeCNN uses Long
hort-Term Memory (LSTM) with an attention mechanism as the
ecoder to generate code comments.
To evaluate the effectiveness of SeCNN, we conduct experi-

ents on a large-scale dataset of 87,136 Java methods (Hu et al.,
018b). Experimental results show that SeCNN achieves bet-
er performance in terms of BLEU (Papineni et al., 2002) and
ETEOR (Banerjee and Lavie, 2005) metrics compared with state-
f-the-art approaches.
To our best knowledge, the main contributions of this paper

an be summarized as follows:

• We propose a novel method SeCNN to generate code com-
ments. In particular, SeCNN uses two CNNs as encoder to
capture semantic information of source code, and uses LSTM
with an attention mechanism as decoder to generate code
comments.

• We propose a novel AST traversal method, named as Im-
proved Structure-Based Traversal (ISBT), which can better
encode the structure information. Moreover, to alleviate the
out-of-vocabulary problem of source code’s token and AST
node, we use camel casing conversion to split source code’s
identifiers into several words, which can effectively decrease
the number unique words in both token and AST node
vocabulary.

• We evaluate SeCNN on a dataset of 87,136 Java methods.
The experimental results show that the SeCNN is more effec-
tive and more efficient compared with five state-of-the-art
baselines.

• To facilitate the replication of our study and evaluation
of future code comment generation techniques, our source
code and dataset used in this paper are all available in the
GitHub repository.2

The rest of the paper is organized as follows: Section 2 presents
he background of this paper. Section 3 introduces the framework
nd details of SeCNN. Section 4 and Section 5 show the exper-
ment setup and result analysis. Section 6 discusses threats to
alidity of this paper. Section 7 surveys the studies related to code
omment generation and shows the novelty of our study. Finally,
ection 8 concludes the paper and shows potential future work.

1 For example, ‘‘currentDepth’’ can be splited into ‘‘current’’ and ‘‘depth’’;
‘isDoubleEqual’’ can be splited into ‘‘is’’, ‘‘double’’, and ‘‘equal’’.
2 https://github.com/pengbin2018/SeCNN.
2

Fig. 1. Standard RNN and its unfolded.

. Background

In this section, we first introduce the background of our study,
nd then show the motivation of our study.

.1. Language model

Code comment generation techniques are inspired by the
echniques used in text generation task of NLP field (Libovický
nd Helcl, 2018). The language model used to generate code
omments is learned from code corpus. More specifically, for
equence X generated from the input sentence, where X = (x1,
2, . . ., xn), the language model aims to estimate the probability
f each element in the output sequence responding to sequence
.
In previous studies on code comment generation, Recurrent

Neural Network (RNN) (Hu et al., 2018a) and Long Short-Term
Memory Model (LSTM) (Shido et al., 2019) are two popularly
used techniques, which will be introduced in the following two
subsections.

2.1.1. Standard Recurrent Neural Network
Recurrent Neural Network (RNN) has been widely used in code

comment generation approaches (Hu et al., 2018a; LeClair et al.,
2019; Wei et al., 2019). Standard RNN takes sequence data as
the input, and then it will perform recursion in the evolution
direction (i.e., sequence generation direction) of the sequence.
Finally, Standard RNN connects all nodes (i.e., cyclic units) in
a chain. Fig. 1 shows the framework of standard RNN and its
unfolded. More specifically, it reads the words in the sentence
one by one, and predicts the possible subsequent words at each
time step. Take the step t as an example, it calculates hidden state
ht according to the previous hidden state ht−1.

Due to the ability of manipulating the sequence data, RNN can
andle structural information to some extent. But it only uses
he root features of structural information for supervised learn-
ng, which limits its effectiveness in code comment generation
echniques.

.1.2. Long short-term memory model
During the back-propagation process of standard RNN model,

he gradient may explode or disappear, especially when there is a
ong dependency in the input sequence. To alleviate this problem,
esearchers improved RNN and proposed Long Short-Term Mem-
ry Model (LSTM) (Hochreiter and Schmidhuber, 1997; Chung
t al., 2014). LSTM consists of three gates to control the state of
emory cells. These three gates are called as the forget gate, the

nput gate, and the output gate, respectively. In particular, the
orget gate can decide what information should be discarded or
etained. The input gate is used to update the unit status. The
utput gate can determine the value of the next hidden state,
hich contains the relevant information previously entered. Fig. 2

https://github.com/pengbin2018/SeCNN
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Fig. 2. The structure of an LSTM unit.

hows a typical memory cell of LSTM, where Ct−1 is the content
ector of the previous state, and ht−1 is the hidden state of the

previous state.
In Fig. 2, σ is a sigmoid processing unit, which outputs a vector

between 0 and 1 according the information provided by ht−1 and
t .
ft is generated by the forget gate, which decides what kind of

nformation should be discarded or retained.
it is generated by the input gate, and it decides what kind of

ew information should be stored in the cell state.
Ĉ is the new information added in the current state.
ot is generated by the output gate, which decides what kind

f value should be set to the output.
Ct is the content vector of the current state.

.2. Convolutional Neural Network

Convolutional Neural Network (CNN) is one of the representa-
ive neural networks in the field of deep learning, and it has made
any breakthroughs in the field of image analysis (Szegedy et al.,
015) and computer vision (Ren et al., 2015). Recent research
hows that the CNN model is also effective in Natural Language
rocessing (NLP), and can perform very well in sentence classi-
ication (Kim, 2014) and web search (Shen et al., 2014) tasks.
NN-based techniques usually include a number of convolutional
ayers and pooling layers. In the convolutional layer, CNN will cal-
ulate the dot product between an area of the input data and the
eight matrix (called a filter). The filter will slide across the entire

nput data and repeat the same dot product calculation operation.
verage pooling and maximum pooling are two commonly-used
ooling methods, of which the latter one is used the most. In
NN, the pooling layer is used to reduce the spatial dimension,
owever it does not reduce the depth of the network. When using
he largest pooling layer, the largest feature points (i.e., the most
ensitive area in the image) in the input area are used, and when
sing the average pooling layer, the average feature points of the
nput area are used.

In recent years, a number of CNN-based techniques (Kim,
014; Szegedy et al., 2016; Kalchbrenner et al., 2014) have been
roposed, and different techniques have advantage of handling
ifferent problems. Due to space limitation, we use TextCNN as an
xample to introduce the basic idea of CNN. TextCNN (Kim, 2014)
s a type of CNN that is designed to handle text related problems.
ig. 3 shows the convolutional layer of one convolution kernel
f TextCNN. The convolutional layer is used for vector feature
xtraction. In TextCNN, a vector of sentences with length n can be

represented as x , · · ·, x , where x is the vector corresponding to
1 n i

3

Fig. 3. Convolutional layer of TextCNN.

the ith word in the sentence. This convolution can be computed
by the following formula:

ci = f (W · xi:i+h−1 + b) (1)

where W is the convolution kernel, which is applied to extract
the features of h adjacent vectors. The size of W is h× k, where
k has the same dimension as the input vector, and h is the set of
sliding window size. xi:i+h−1 represents the adjacent k vectors. b
is a bias and f is a non-linear function. ci is the feature extracted
from adjacent k vectors.

2.3. Motivation

Code comment generation approaches can be used to help
developers understand the purpose and content of code, but
the existing RNN-based encode-decoder approaches cannot gen-
erate high-quality descriptions when summarizing information
among several code blocks that are far from each other (i.e., the
long-dependency problem).

Besides, there is another problem of code comments gen-
eration. Developers usually define various new identifiers, and
these identifiers are composed of multiple words. Such situation
would lead to the problem of the vocabulary explosion, which
has a negative effect on lexical information extraction while
converting it into a vector. To deal with the problem, previous
studies (LeClair et al., 2019; Hu et al., 2019) split the identifier of
the code into multiple words. These words usually contain lexical
information, but lack of syntactic information, which could limit
the effectiveness of code comment generation approaches.

To improve the quality of generated comments, in this pa-
per, we propose a novel code comment generation approach
SeCNN. Different from the previous approaches, SeCNN split the
identifiers in both code and AST into multiple words, then it
uses two CNNs to extract source code semantic information, and
finally SeCNN will use LSTM with an attention mechanism to
generate comments. The motivation of using CNN is that previous
studies (Sun et al., 2019b; Allamanis et al., 2016) have proved
CNN’s capability of extracting lexical and syntactic information
of source code. The reason of using LSTM is that previous stud-
ies (Gehring et al., 2017) in the field of natural language show
that LSTM with an attention mechanism is very suitable for text
generation. Moreover, different from the traditional attention
mechanism (Bahdanau et al., 2014; Luong et al., 2015), our at-
tention mechanism focuses on the features extracted by CNN, not
the input sentences.

3. Approach

In this section, we first introduce the framework of SeCNN, and
then show the details of this proposed approach.
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Fig. 4. The framework of our proposed approach SeCNN.
.1. Framework of SeCNN

A significant issue with existing code comment generation
echniques is that source code introduces new vocabulary faster
han natural languages (Hu et al., 2018a; Karampatsis et al.,
020). SeCNN employs CNN to extract semantic information of
he source code, and splits the identifier from both code and AST
nto multiple words to handle the vocabulary explosion challenge.

Fig. 4 shows the framework of SeCNN. In Fig. 4, it can be found
hat SeCNN consists of three steps: data preprocessing, semantic
nformation extraction, and code comment generation. In the data
reprocessing step, we convert the source code into the code
oken vector and the AST vector. To alleviate out-of-vocabulary
roblem, we use camel casing conversion to split the identifiers
rom both code tokens and AST nodes into several words, which
as described in detail in Section 5.4.1. Our method’s innovation

s mainly reflected in the second step of Fig. 4. In this step, we use
wo CNNs to extract semantic information of source code. Finally,
n the code comment generation step, we use LSTM with atten-
ion mechanism to decode semantic information and generation
omments. The details of each step in SeCNN are introduced in
he following subsections.

.2. Data preprocessing

Since the inputs of CNN models are vectors, we need to con-
ert all the inputs into vectors in the data preprocessing step.

.2.1. Source code preprocessing
Source code consists of keywords, operators, identifiers and

ymbols, which can be used to learn lexical information by us-
ng neural network algorithms. To construct the input sequence
or neural network algorithms, we employ a widely-used tool
avalang3 (Hu et al., 2019) to convert source code into tokens.
urthermore, to address the vocabulary explosion problem, we

3 https://pypi.org/project/javalang/.
4

split each identifier in code according to the camel casing con-
version, and all code tokens are converted to lowercase. Then, for
a sequence data of code tokens, let X = ⟨x(code)1 , . . ., x(code)n ⟩, and
we use word embedding to convert it into the vectors ⟨x(code)1 , . . .,
x(code)n ⟩, where x(code)i is a k-dimensional vector indicating the ith
code token xi.

3.2.2. Abstract syntax tree with improved structure-based traversal
Code token can be used to learn lexical information, but it does

not contain syntactical information. Abstract Syntax Tree (AST) is
an abstract representation of the syntax structure of source code,
and AST can be used to learn syntactical information of source
code. In this paper, we also use javalang tool to parse source
code to generate its AST. In particular, our approach is based
on the Structure-Based Traversal (SBT) method proposed by Hu
et al. (2018a), which aims to preserve the structural information
of source code to the greatest extent during syntax information
extraction.

Although SBT method is promising in the code comment gen-
eration task, the original sequence generated by SBT contains too
much duplicate content. Moreover, SBT uses a pair of brackets to
represent the tree structure, this is not conducive to coding struc-
tural information. SBT sequence also contains the identifier of
source code, so it also contains the vocabulary explosion problem.

To solve these problems, we propose a novel AST traversal
method, named as Improved Structure-Based Traversal (ISBT)
method. ISBT method can better encode structure information of
the code. Based on ISBT method, we propose a new component
to encode our ISBT sequence. Fig. 5 uses a simple example to
illustrate how ISBT method traverses a tree. First, we use SBT
to traverse the AST to generate the SBT sequence. Then, after
traversing the AST with SBT, we use the serial number of the
AST via pre-order traversal to replace the brackets in the SBT
sequence, and split the SBT sequence into two parts: serial num-
bers and AST nodes, as shown in Fig. 5. Each AST node has two
attributes (i.e., type and value). Finally, to address the vocabulary
explosion challenge, we use camel casing conversion to split the

https://pypi.org/project/javalang/
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Fig. 5. An example of sequencing an AST to a sequence by ISBT (the main idea
is to replace the brackets in SBT with the first order traversal number).

value of the node of type SimpleName. This type of node corre-
sponds to the identifier of the source code. The serial number of
the original node is copied to each split word. For example, a node
is ‘‘isLayered’’ and its serial number is ‘‘3’’. The node ‘‘isLayered’’ is
split to ‘‘is Layered’’, and the serial number ‘‘3’’ is copied to ‘‘3 3’’.
Based on the above analysis, it can be seen that we can restore a
SBT sequence unambiguously from a generated sequence by using
ISBT. Therefore, our improvement on original SBT can still keep
all information.

To construct the inputs for CNN models, we propose a ISBT-
ased CNN to encode the ISBT sequence. More specifically, for
serial number sequence X = ⟨x(serial)1 , . . . , x(serial)m ⟩, and a node
equence X = ⟨x(node)1 , . . . , x(node)m ⟩, we use word embedding to
onvert them into vectors ⟨x(serial)1 , . . . , x(serial)m ⟩ and ⟨x(node)1 , . . . ,
(serial)
m ⟩, where x(serial)i and x(node)i are both k-dimensional vectors.
o extract their features, we use ISBT-Based CNN to integrate two
equences (i.e., number and AST node) into one sequence. This
onvolution can be computed as follows:
(isbt)
i = ReLU(W (isbt)

[x(node)i ; x(serial)i ]) (2)

here W (isbt) is the weight of the ISBT-Based CNN kernel, and
(isbt)
i is the vector extracted by x(node)i and x(serial)i through convo-
ution. Besides, ReLU (Rectified Linear Unit) is a commonly used
on-linear activation function in neural network, which is defined
s follows:

(x) = x+
= max(0, x) (3)

This activation function was first introduced to a dynamical
etwork by Hahnloser et al. in 2000 (Hahnloser et al., 2000),
nd this has been widely used in subsequent neural network
esearch (Hansel and Van Vreeswijk, 2002; Kadmon and Som-
olinsky, 2015; Sun et al., 2019a; Engelken et al., 2020).

.3. Semantic information extraction

SeCNN uses CNN model to extract semantic information, and
e show the details of this step in the following subsections.

.3.1. Convolutional neural network model
In our proposed approach, we use two CNN-based models to

apture the semantic information of source code. In particular,
ne CNN is used to extract lexical information from code tokens,
nd another CNN is used to extract syntactic information from
STs.
The vectors of all code tokens can be denoted as ⟨x(code)1 , . . .,

(code)
n ⟩, where x(code)i is the k-dimensional input vector, and n
eans there are n vectors. Then, we apply a series of convolu-

ional layers to extract their features ⟨y(code)
1 , . . ., y(code)

n ⟩. Such
onvolution can be calculated as follows:
code

= f (W code
· xcode ) (4)
i i:i+h−1

5

here W code is the convolution kernel, which is the trainable
arameter and is updated while training. The size of W code is
× k, where k has the same dimension as the input vector, and
is the sliding window size. xcodei:i+h−1 represents the adjacent k
ectors. f is a non-linear function (e.g., ReLu function). ycode

i is
he feature vector extracted from the xcodei:i+h−1. Here · represents
onvolution operator represents convolution, which means multi-
lying the two matrices’ corresponding positions and then adding
ll products’ values.
Notice that our convolution slightly differs from TextCNN

Kim, 2014). To maintain the same feature vector dimension
efore and after convolution, we use k convolution kernels for
ach convolution layer. To keep the same number of feature
ectors before and after convolution, we apply zero to pad the
nput vector. Therefore, the feature vector extracted by each
onvolutional layer has the same dimension as the original input
ector. Therefore, shortcut connections are feasible in SeCNN. To
olve the problem of network degradation, that is, as the depth
f the neural network layer increases, the accuracy rate first rises
nd then reaches saturation, and then continue to increase the
epth will cause the accuracy rate to decline, we use a shortcut
o connect each layer in parallel before activating the function.

Similar as code tokens, for the vectors ⟨x(isbt)1 , . . ., x(isbt)m ⟩ of ISBT
nformation, we use the same convolution operation to extract
eature vectors ⟨y(isbt)

1 , . . ., y(isbt)
m ⟩.

Finally, to obtain the semantic vectors, we use the concat
unction provided by Tensorflow to connect ⟨y(code)

1 , . . ., y(code)
n ⟩

nd ⟨y(isbt)
1 , . . ., y(isbt)

m ⟩. The semantic vectors are represented as
y(sem)
1 , . . ., y(sem)

n+m ⟩.

.3.2. Pooling
SeCNN uses pooling to construct the LSTM initial state, which

s the encoding of the input and guides the decoder process.
STM initial state includes context vector (c_state) and hidden
tate (h_state). We use two pooling algorithms, MAX pooling,
nd attention pooling. MAX pooling can reduce the feature di-
ension of the input data. Attention pooling can combine lexical
nd grammatical information. To construct the content vector
ith semantic information, SeCNN will firstly apply MAX pool-

ng (Krizhevsky et al., 2017) on the features ⟨y(code)
1 , . . ., y(code)

n ⟩

xtracted from the code. Then, SeCNN uses a fixed-size control-
ing vector code pooling to compute the attention weights for
SBT Encoder. After that, SeCNN uses features ⟨y(isbt)

1 , . . ., y(isbt)
m ⟩

xtracted from ISBT to do attention pooling, which aims to make
_state contain lexical and grammatical information. Similarly,
he features ⟨y(isbt)

1 , . . ., y(isbt)
m ⟩ are used to do MAX pooling to get a

ontrolling vector isbt_pooling. Then we apply attention pooling
n the isbt_pooling and features ⟨y(code)

1 , . . ., y(code)
n ⟩ to get the

ector c_state. Finally, we use c_state and h_state as the initial
tate of LSTM in Decoder.

.4. Code comment generation

In the third step of SeCNN, we use LSTM with an attention
echanism to decode the semantic information of source code
nd generate code comments.

.4.1. Attention mechanism
SeCNN uses attention mechanism to assign a weight to each

emantic vector extracted by CNN models. The weight value
etermines how important this vector is to the output target
ords. Specifically, in our proposed approach, we use the classical
ttention method proposed by Bahdanau et al. (2014) as the
ttention mechanism in SeCNN.
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Fig. 6. Decoder in the training mode.

Fig. 7. Decoder in the testing mode.

The attention mechanism needs to calculate a context vector
c i for predicting each target word y i by the following formula:

i =

m+n∑
j=1

aijy
(sem)
j (5)

where y(sem)
j is the semantic vector extracted by CNN models, and

aij indicates the corresponding attention weight of y(sem)
j .

To calculate aij, SeCNN firstly calculates an alignment model
score eij to measure how well of each input matches the current
output of the decoder, and the calculation formula is defined as
follows:

eij = a(hi−1, y
(sem)
j ) (6)

where a is the alignment model, which is a feed-forward neural
network.

Finally, we use the softmax function to normalize the score to
obtain the attention weight, and the formula is defined as follows:

aij =
exp(eij)∑m
k=1 exp(eik)

(7)

3.4.2. Sequence output
The purpose of decoder is to decode the semantic vectors

generated by CNN models and generate code comments y1, . . .,
n. Here, yi is predicted by the following formula:

yi = P(yi|y1, . . . , yi−1, x) = g(yi−1, hi, ci) (8)

where g is a stochastic output layer and is used to estimate the
probability of word yi. ci is the context vector, and hi is the current
hidden state.

In the decoder process shown in Fig. 4, we use ⟨start⟩ as the
first input-word(Y0) to the decoder. Then, we use ⟨eos⟩ as the last
word(Yn). Taking Case 3 in Table 10 as an example, LSTM receives
a series of prior words as the input (Williams and Zipser, 1989)
during the model training process. Fig. 6 shows the predicted
result word by word from the decoder component in the training
mode, and Fig. 7 shows decoder in the testing mode, which
takes the previous predicted words as a part of input rather than
labeled text.

4. Experiment setup

4.1. Research questions

In this section, we evaluate the effectiveness of our proposed
approach by comparing it with state-of-the-art baselines when
considering the accuracy and efficiency of generating Java method
6

Table 1
Statistics for code snippets in the dataset.
# Projects # Files # Lines # Items

9732 1,051,647 158,571,730 87,136

Table 2
Statistics for code and comments length.
Statistics for comment length

Avg Mode Median <20 <30 <50
8.86 8 13 75.50% 86.79% 95.45%

Statistics for code length

Avg Mode Median <100 <150 <200
99.94 16 65 68.63% 82.06% 89.00%

comments. Specifically, We focus on the following three research
questions:

RQ1: Can SeCNN outperform state-of-the-art code comment gen-
eration baselines?

This RQ is designed to verify the code comment generation
effectiveness of SeCNN. To answer this RQ, we conduct a se-
ries of empirical studies and compare SeCNN with other state-
of-the-art code comment generation baselines, including Deep-
Com (Hu et al., 2018a), TL-CodeSum (Hu et al., 2018b), Hybrid-
DeepCom (Hu et al., 2019), Dual Model (Wei et al., 2019) and
AST-attendgru (LeClair et al., 2019).

RQ2: How does code and comment length affect the performance
of our proposed approach SeCNN?

This RQ is designed to investigate the impact of source code
and comment with different length on the code comment gen-
eration effectiveness of our proposed SeCNN. To answer this RQ,
we collect and analyze the experimental results of using SeCNN
in generating comments for source code with different lengths.

RQ3: What is the difference between comments generated by
SeCNN and human-written comments?

This RQ is designed to investigate the quality of code com-
ments generated by SeCNN in the manual manner. To answer this
RQ, we compare the difference of code comments generated by
SeCNN and written by human.

4.2. Dataset

In the Previous study, Hu et al. (2018b) collected a large corpus
by matching Java methods and comments in 9732 projects from
GitHub.4 In our study, we also use the same dataset and use the
same way to split this dataset into training set, validation set,
and test set. Tables 1 and 2 show the statistics information of the
dataset used in our study.

In Table 1, the column # Items indicates that this dataset has
87,136 pairs of ⟨code, comment⟩, where the average length of
comments tokens is 8.86 and the average length of code tokens
is 99.94. Moreover, 95% of the code comments are less than 50
words, and about 90% of the Java methods are less than 200
tokens. Note that the comment length is the number of words and
punctuation in the comment, and the code length is the number
of all words and symbols before the code segmentation. In the
previous study, the data was divided into the training set, the
test set, and the validation set according to the ratio of 8:1:1 (Hu
et al., 2018b), so we adopted the same dataset split method, and
the details can be found in Table 3.

4 https://github.com/.

https://github.com/
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able 3
plits of dataset.
Dataset # Items

Training set 69,708
Validation set 8,714
Test set 8,714

4.3. Performance metrics

To evaluate the effectiveness of SeCNN, we choose two MT
Machine Translation)-based metrics (i.e., BLEU and METEOR).
hese chosen evaluation metrics have been widely used in pre-
ious code comment generation studies (Hu et al., 2018b, 2019;
ei et al., 2019).
BLEU (Papineni et al., 2002) score is a widely used perfor-

ance metric for text generation tasks (Klein et al., 2017) in
atural Language Processing (NLP) and has been used in the
valuation the quality of generated code comments (Hu et al.,
018a,b). It calculates the similarity between the generated se-
uence and the reference sequence. The value of BLEU scores
anges from 0 to 100%. The higher the BLEU , the closer the
andidate is to the reference.
BLEU (Papineni et al., 2002) is defined as the geometric mean

f n-gram matching accuracy scores multiplied by the simplicity
enalty to prevent generating very short sentences. The value is
alculated by the following formula:

LEU = BP · (
n∑

i=0

wnlogpn) (9)

here pn is the geometric average of the modified n-gram
recision, and wn is the positive weights. In the above formula,
P is the brevity penalty, which can be computed as follows:

P =

{
1 c > r
e1−r/c c ≤ r

(10)

here c represents the length of the candidate (generated com-
ent) and r indicates the length of the reference (extracted from

avadoc).
More specifically, in our study, we use the sentence-level BLEU

s our performance metric, which is a widely adopted choice
n previous code comment generation studies (Hu et al., 2018a,
019; Wei et al., 2019).
METEOR (Banerjee and Lavie, 2005) is a widely used machine

ranslation-based metric. It evaluates translation hypotheses by
ligning them to reference translations and calculating sentence-
evel similarity scores. The feature of METEOR is the introduction
f synonym matching.
METEOR (Banerjee and Lavie, 2005) is explicitly designed to

mprove correlation with human judgments of machine transla-
ion quality at the segment level. The value can be computed as
ollows:

ETEOR = (1 − Pen) · Fmean (11)

here Pen is a penalty coefficient, and Fmean is a parameterized
armonic mean. Pen can be computed as follows:

en = γ (
ch
m

)β (12)

here ch is the number of chunks (In this study, chunks rep-
esent several adjacent words in the reference sentence). m is
the number of matches. γ determines the maximum penalty (0
≤ γ ≤ 1). β determines the functional relation between the
fragmentation and the penalty. γ and β are set to 0.20 and 0.60
respectively (Denkowski and Lavie, 2014).
7

Fmean can be computed as:

Fmean =
P · R

α · P + (1 − α) · R
(13)

here P is the unigram Precision and R is the unigram Recall. α is
et to 0.85 (Denkowski and Lavie, 2014).
The correlation of two MT-based metrics and the performance

f code comment generation techniques is also positive. A higher
LEU or METEOR value indicates a better code comment genera-
ion technique.

.4. Statistical analysis

.4.1. Hypothesis testing method
Since experiments between our proposed approach and exist-

ng baselines are conducted on the data with the same code and
omments, we adopt the Wilcoxon signed-rank test to further
nalyze the experimental results.
Wilcoxon signed-rank test is an alternative hypothesis test

pproach when the test data cannot be assumed to be normally
istributed (Ott and Longnecker, 2015). Therefore, it can pro-
ide a reliable statistical basis for comparing the effectiveness of
ifferent approaches.

.4.2. Effect size
In statistical analysis, an effect size is a number measur-

ng the strength of the relationship between two variables in a
opulation or a sample-based estimation of that quantity. Specif-
cally, we calculate the Cliff’s Delta (Cliff, 1993), which is a non-
arametric effect size measure, to quantify the amount of differ-
nce between the two groups. We leverage the Cliff’s Delta to
easure the difference between SeCNN and other baselines in

erms of BLEU or METEOR metrics.
Besides, the effect size defines the Cliff’s Delta value of less

han 0.147, between 0.147 to 0.33, between 0.33 and 0.474, and
bove 0.474 as negligible, small, medium, and large respectively.

.5. Baselines

In our study, we employ five state-of-the-art code comment
eneration approaches as the baselines. The detailed description
f these baselines is introduced as follows:

aseline 1: DeepCom (Hu et al., 2018a) is an attention-based
Seq2Seq model for generating comments of Java methods. Deep-
Com takes ASTs as the input, and uses SBT method to con-
vert these ASTs into sequences in a special format. To compare
the performance of SeCNN and DeepCom, in our study, we re-
implement the DeepCom model according to the same parameter
settings used in the corresponding study (Hu et al., 2018a).

Baseline 2: TL-CodeSum (Hu et al., 2018b) is a deep model that
generates code comments by capturing semantics information
from source code with the help of API knowledge. In our study,
we directly use the experimental results of the corresponding
study (Hu et al., 2018b) to perform comparison.

Baseline 3: Hybrid-DeepCom (Hu et al., 2019) is a variant of
attention-based Seq2Seq model for generating comments for Java
methods. Hybrid-DeepCom uses both the source code tokens
and its AST structure to generate code comments. In our study,
we re-implement Hybrid-DeepCom model according to the same
parameter settings used in the corresponding study (Hu et al.,
2019) to perform comparison.

Baseline 4: AST-attendgru (LeClair et al., 2019) is a neural model
that combines words in source code with code structure. AST-
attendgru involves two unidirectional Gated Recurrent Unit (GRU)
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ayers: one is used to process the words from source code, and the
ther is designed to process the AST. AST-attendgru modifies the
ST flattening procedure proposed by Hu et al. (2018a). In our
tudy, we re-implement AST-attendgru model according to the
ame parameter settings used in the corresponding study (LeClair
t al., 2019) to perform comparison.

aseline 5: Dual Model (Wei et al., 2019) is a dual learning
ramework to jointly train Code Generation (CG) and Code Sum-
arization (CS) models. To enhance the relationship between the

wo tasks in the joint training process, in addition to imposing
onstraints on the probability, the Dual Model creatively proposes
constraint that uses the nature of the attention mechanism.

n our study, we directly use the experimental results of the
orresponding study (Wei et al., 2019) to perform comparison.

.6. Experimental settings

For our proposed approach, the value of some parameters are
et according to the previous related studies (Hu et al., 2018a,b,
019). The value of the remaining parameters are optimized via
he validation set (e.g., ISBT length, batch size). Notice the value
f these parameters are not optimized on the test set.
We replace the constant numbers and strings in the source

ode with special marks ⟨unm⟩ and ⟨str⟩ respectively according
o the setting of Hu et al. (2019). Table 2 shows 89.00% of Java
ethods are less than 200 tokens and we find that 90.17% of ISBT
equences do not exceed 300 tokens. Therefore, the maximum
ength of code sequence and ISBT sequence are set to 200 and
00. We use the special symbol ⟨pad⟩ to fill short sequences,
nd longer sequences will be clipped. Table 2 shows 86.79% of
ava methods are less than 30 tokens. Therefore, the maximum
omment length is set to 30. We add special tokens ⟨start⟩ and
eos⟩ to the comments, where ⟨start⟩ is the beginning of the
ecoded sequence, and ⟨eos⟩ indicates the end of the decoded
equence. The vocabulary sizes of the code, ISBT, and comment
re set to 30,000, 30,000, and 23,428 respectively according to
he setting of Wei et al. (2019). Out-of-vocabulary tags will be
eplaced by ⟨unk⟩.

The model parameters and their settings are described as
ollows:

• We use the SGD algorithm to train the parameters, and the
inimum batch size, which is used to randomly select the given
umber of samples from the training examples, is set to 128 (Hu
t al., 2018a).

• The encoder model of SeCNN uses a nine-layer CNN. The size
f all the convolution kernels is 4 × 500, and the convolution step
s set to 4. These parameters are optimized by the validation set.

• The decoder model of SeCNN uses one-layer LSTM, where
he hidden state is 500 dimension, and the embedded word is
00 dimension. The value of this parameter is optimized by the
alidation set, and more details can be found in Section 5.4.3.

• The initial learning rate is set to 1.0. The learning rate is
ecayed using the rate of 0.99. We use the exponential decay
ethod to reduce the learning rate and set the learning rate decay
oefficient to 0.99. The value of these parameters are optimized
y the validation set.

• SeCNN clips the gradients norm by 5. We use dropout
trategy during the training process and set dropout to 0.8 (Hu
t al., 2018a).

• SeCNN uses cross-entropy minimization as the cost func-
ion (Hu et al., 2018a).

We use python 3.6 and Tensorflow5 framework to implement
eCNN. All experiments conducted in our study run on a Linux
erver (Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz CPU and a
esla V100 GPU with 32 GB memory).

5 https://www.tensorflow.org/.
8

Table 4
The average performance of different approaches.
Approach BLEU (%) METEOR (%)

DeepCom 40.51 22.24
TL-CodeSum 41.98 18.81
Hybrid-DeepCom 42.26 24.86
AST-attendgru 40.82 24.54
Dual Model 42.39 25.77

SeCNN 44.69 26.88

Table 5
P-value of Hypothesis in Section 5.1.
Approach BLEU METEOR

DeepCom 4.43e−88 3.29e−266
Hybrid-DeepCom 1.08e−33 4.98e−9
AST-attendgru 5.92e−121 4.35e−9

5. Result analysis

5.1. RQ 1: Can SeCNN outperform state-of-the-art code comment
generation baselines?

As introduced in Section 4.5, we use five state-of-the-art and
widely compared code comment generation techniques as base-
lines. In these baselines, we re-use the experiment results of two
techniques (i.e., TL-CodeSum and Dual Model) and re-implement
other three techniques (i.e., DeepCom, Hybrid-DeepCom and AST-
attendgru).

To evaluate the performance of SeCNN and other baselines,
we use two MT-based metrics, BLEU and METEOR, to measure
the gap between automatically generated comments and man-
ually written comments, and Table 4 shows the corresponding
experimental results. From this table, we can find that SeCNN
outperforms all the other five baselines in terms of both two met-
rics. More specifically, SeCNN achieves 2.30% to 4.18% and 1.11%
to 4.64% improvements over other baselines in terms of BLEU
and METEOR respectively. Such results indicate that SeCNN can
learn the semantic information of the source code, and generate
higher-quality code comments than other baselines.

In the field of automatic code comment generation, an im-
provement of up to 4.64% is an acceptable level, although the
value is not impressive. For example, the method proposed by
Devlin et al. (2018) obtains a 4.7% absolute accuracy improve-
ment over the state-of-the-art; the Hybrid-DeepCom proposed
by Hu et al. (2019) compared to the AST-based model DeepCom
increases by 1.3%, and Zhou et al. (2019) proposed approach
improves the results of BLEU from 38.08% to 40.52% and that of
METEOR scores from 26.83% to 28.51%.

Furthermore, we conduct Wilcoxon signed-rank test to verify
the competitiveness of our proposed approach SeCNN. Table 5
shows the results of the above hypothesis testing. Note that we
only implemented three baseline approaches, so we can only
perform hypothesis testing on these three approaches. The used
hypothesis in our study is set as follows, H0: There is no signif-
icant difference between SeCNN and each other approaches in
terms of BLEU and METEOR. The significance level of this test is
set as 0.05. It is shown in Table 5 that all the p-values are lower
than 0.05, then the statistical results led to the rejection of the
null hypothesis. These results imply that there is a significant
difference between our proposed method and other approaches
in terms of BLEU and METEOR metrics. Note that the results listed
in Table 4 indicate that our method performs better than other
baselines, so it is safe to conclude that SeCNN can significantly
achieve better performance than other baseline approaches.

Moreover, we also use Cliff’s Delta to evaluate the difference
between SeCNN and other baselines in terms of BLEU andMETEOR

https://www.tensorflow.org/
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able 6
he performance of different methods on three independent repeated
xperiments.
Approach The first

experiment
The second
experiment

The third
experiment

BLEU
(%)

METEOR
(%)

BLEU
(%)

METEOR
(%)

BLEU
(%)

METEOR
(%)

DeepCom 40.51 22.24 39.67 21.59 40.40 22.16
Hybrid-DeepCom 42.26 24.68 41.27 24.66 42.24 25.25
AST-attendgru 40.82 24.54 39.42 23.79 39.95 24.28
SeCNN 44.69 26.68 44.33 26.71 44.60 26.96

Table 7
Cliff’s delta between SeCNN and baselines.
Approach BLEU METEOR

DeepCom 0.08 0.17
Hybrid-DeepCom 0.02 0.03
AST-attendgru 0.01 0.03

metrics. As shown in Table 7, the Cliff’s Delta values are less than
or equal to 0.17, which corresponds to negligible or small effect
size. The results show that our method can outperform existing
baselines, but to a lesser extent.

There are more findings when analyzing the performance
omparison among the five baselines from Table 4. For exam-
le, it can be seen that Hybrid-DeepCom performs better than
eepCom, and the reason is that DeepCom only learns syntactic
nformation but lacks of lexical information. Hybrid-DeepCom
an slightly outperform TL-CodeSum, which shows that syn-
actic information is better than API information in generating
ode comments. Hybrid-DeepCom outperforms AST-attendgru,
nd this proves that RNN is suitable for constructing decoder
odel to generate comments. Moreover, the Dual Model are
etter than other four baselines, which shows that the code
eneration and comment generation tasks are related. In future
esearch, we want to further improve the performance of our
roposed approach by considering this relationship.
To alleviate possible sampling bias in random shuffle and

ampling on the dataset, we repeated the experiment three times
ndependently to evaluate the performance of our proposed ap-
roach. In our study, we repeated the whole process three times
ndependently. For each experiment, we divided the dataset into
he training set, the test set, and the validation set randomly at
:1:1, and then re-trained each model. The results of each exper-
ment are shown in Table 6. Note that we have re-implemented
ethods DeepCom, Hybrid-DeepCom, and AST-attendgru, but
e cannot re-implement TL-CodeSum and Dual model, so we
nly list the experimental results of the above three methods in
able 6. Compared with DeepCom, Hybrid-DeepCom, and AST-
ttendgru, SeCNN still has the best performance in the three
xperiments. Overall, based on this experimental setting, SeCNN
chieves 2.62% to 4.55% improvements in terms of BLEU and
chieves 1.92% to 4.79% improvements in terms of METEOR over

the three baselines.

Summary for RQ1: The BLEU score of SeCNN can reach
44.69%, and the METEOR score can get 26.88%. Compared
to the five state-of-the-art baselines, SeCNN can achieve
the best performance in terms of BLEU and METEOR
metrics.

5.2. RQ 2: How does code and comment length affect the perfor-
mance of our proposed approach SeCNN?

In this RQ, we want to analyze the prediction accuracy of
eCNN with different lengths of source code and comments. As
9

Table 8
P-value of Hypothesis in Section 5.2.

Approach BLEU METEOR

Code length Hybrid-DeepCom 4.50e−6 0.004
AST-attendgru 6.04e−6 0.018

Comment length Hybrid-DeepCom 4.11e−6 3.30e−5
AST-attendgru 1.86e−5 9.09e−5

introduced in RQ1, in our study, we re-implement three base-
lines, which are DeepCom, Hybrid-DeepCom and AST-attendgru.
Hybrid-DeepCom is extended from DeepCom, and shows bet-
ter performance than DeepCom. Moreover, the experimental re-
sults in RQ1 show that AST-attendgru can achieve better perfor-
mance than DeepCom. Therefore, we use two baselines, which
are Hybrid-DeepCom and AST-attendgru, to evaluate the perfor-
mance of SeCNN. The average results of SeCNN and other two
baselines can be seen in Fig. 8.

Fig. 8(a) and (c) demonstrate the performance changes in
terms of BLEU and METEOR metrics of these three techniques
when considering different code lengths. To make it more clear,
we use approximate code length to draw this Figure, and the
approximate function is defined as follows:

F (x) =

{
300 x ≥ 300
(⌊x/10⌋ + 1) ∗ 10 x < 300

(14)

here x is the actual code length, and F (x) returns the corre-
ponding approximate length of x.
From Fig. 8(a) and (c), it can be seen that SeCNN performs

etter than other two baselines in most cases. As the code length
ncreases, both the BLEU and METEOR of SeCNN will increase
irst and then maintain the accuracy at similar level. Among
he different code lengths shown in Fig. 8(a) and (c), SeCNN
eaches the highest in the 25 and 24 node positions of these
wo line charts, which means that SeCNN can achieve the best
erformance in most cases, and their proportions are 83.33% and
0% respectively. Since short code is often incomplete, so such
erformance is reasonable.
Fig. 8(b) and (d) demonstrate the changes in terms of BLEU

nd METEOR metrics of these three techniques when consider-
ng different comment lengths. In most cases, SeCNN has the
ighest BLEU and METEOR scores. Based on the impact of the
ifferent comment lengths shown in Fig. 8(b) and (d), SeCNN
an achieve the best performance at the most cases in these
wo subfigures, and their proportions are 89.66% and 79.31%
espectively. More specifically, as the comment length increases,
he METEOR score of SeCNN increases first and then maintains
imilar accuracy. With the comment length increasing, the BLEU
score of SeCNN increases first and then decreases. When the
comment only contains 5 to 10 words, SeCNN will achieve the
highest BLEU score.

Besides, we utilize the Wilcoxon signed-rank test to verify the
competitiveness of our proposed method. In other words, we use
statistical analysis to verify whether the polyline of our method
in Fig. 8 is significantly higher than other methods. Specifically,
the hypothesis used in this section is defined as follows, H0:
There is no significant difference between SeCNN and each other
approach in different code lengths or comment lengths in terms
of BLEU and METEOR. Table 8 reports the p-value of H0 on two
approaches using Wilcoxon signed-rank test. As Table 8 shows,
the p-value in all situations is less than 0.05, so it is safe to accept
the above conclusions that SeCNN can achieve significantly better
performance than Hybrid-DeepCom and AST-attendgru.

Furthermore, Table 9 shows the Cliff’s Delta between SeCNN
and other approaches in different code lengths or comment

lengths in terms of BLEU and METEOR metrics. The results listed
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able 9
liff’s delta under different code lengths and comment lengths.

Approach BLEU METEOR

Code length Hybrid-DeepCom 0.41 0.25
AST-attendgru 0.49 0.17

Comment length Hybrid-DeepCom 0.33 0.29
AST-attendgru 0.47 0.29

in Table 9 indicate that the performance of SeCNN has a signif-
icant difference with other baselines under different code and
comment lengths in terms of BLEU metric.

Summary for RQ2: When considering different lengths
of code and comments, SeCNN achieves better perfor-
mance than Hybrid-DeepCom and AST-attendgru in most
cases. Besides, the experiment results also show that
SeCNN performs the worst when code or comments are
too short, and the reason is that short source code or
comments are often incomplete, which will affect the
performance of code comment generation techniques.

5.3. RQ 3: What is the difference between comments generated by
SeCNN and human-written comments?

In this section, we want to analyze the difference between
omments generated by code comment generation techniques
nd written by human. Since automatic evaluation metrics cannot
ully reflect the actual quality of the results, we conducted a
anual evaluation study to evaluate the quality of automatically
enerated code comments. As discussed in RQ1, we re-implement
10
three code comment generation techniques, DeepCom, Hybrid-
DeepCom and AST-attendgru, where Hybrid-DeepCom shows the
best performance in these three techniques. So in this section, we
only employ Hybrid-DeepCom as one baseline of code comment
generation technique to perform comparison. Due to the high
cost of manually analyzing all these code comments, we use a
commonly-used sampling method (Singh and Mangat, 2013) to
select the minimum number MIN6 of code comments. The value
of MIN is calculated by the following formula:

MIN =
n0

1 +
n0−1

populationsize

(15)

0 =
Z2

× 0.25
e2

(16)

here the value of populationsize is 8714, which is the total
umber of code comments. Z is a confidence level and e is the
rror margin. In our experiment, we set the value of Z to 95%
nd the value of e to 0.05. Then the calculated value ofMIN is 384,
hich means we should obtain 384 groups of scores from human
valuation for SeCNN and Hybrid-DeepCom Dataset respectively.
We recruited five volunteers with rich development experi-

nce (including teachers, professional master and doctoral stu-
ents) to provide feedback for our comparison. Among them, we
ollowed the guidelines of experimental design7 and did a within-
ubjects experiment, because every volunteer will answer the
ame questions under the same circumstances.
Specifically, we randomly selected 384 pairs of prediction

esults and their references from the test set. Therefore, our
uestionnaire has a total of 384 pages, and each page consists of

6 https://www.surveysystem.com/sscalc.htm#one.
7 https://opentextbc.ca/researchmethods/chapter/experimental-design/.

https://www.surveysystem.com/sscalc.htm#one
https://opentextbc.ca/researchmethods/chapter/experimental-design/
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Table 10
One page in the questionnaire of user study.
Answer questions for the following code:
private static int exitWithStatus(int status) {

if (ToolIO.getMode() == ToolIO.SYSTEM){
System.exit(status);

}
return status ;

}
Reference comment: if run in the system mode , exits the program , in tool mode returns the status.

Candidate 1: The method exists , which means the status is null and remove status.
Please evaluate the naturalness of Candidate 1: Score from 1 to 5 (5 is the best)
Please evaluate the relevance of Candidate 1: Score from 1 to 5 (5 is the best)

Candidate 2: Returns a hash failure.
Please evaluate the naturalness of Candidate 2: Score from 1 to 5 (5 is the best)
Please evaluate the relevance of Candidate 2: Score from 1 to 5 (5 is the best)
Table 11
Manual analysis.
Type SeCNN Hybrid-DeepCom

Naturalness 3.78 3.53
Relevance 3.73 3.51

an input source code, comments generated by SeCNN and Hybrid-
DeepCom, and a hand-written reference comment. Then we send
each copy of the 384-page questionnaire to each volunteer, and
volunteers were required to evaluate two comments for each
code. Furthermore, to ensure fairness, the order of the comments
generated by the two methods is random on each page, and we
delete their tags to ensure that volunteers cannot distinguish
comments generated by Hybrid-DeepCom or SeCNN. Our manual
evaluation allowed volunteers to search for relevant information
and unfamiliar concepts on the Internet.

To allow volunteers to evaluate the quality of generated com-
ents from different views, we followed Gao et al. (2020) to
onsider two modalities, naturalness and relevance. Naturalness
efers to the grammatical correctness and fluency of the gen-
rated comments, that is, whether the text of a comment is
asy for humans to read and understand; Relevance refers to
he correlation between the generated comments and the input
ode, that is, can humans understand the intention of the code
ased on this comment. One page of our questionnaire as shown
n Table 10, volunteers need to read the input code, reference
omment, and two generated comments. Then score the two
enerated comments’ naturalness and relevance, with a score
anging from 1 to 5 (5 is the best).

Finally, we calculated the average value of the five volunteers’
eedback, and the results can be found in Table 11. For example,
he value in the second row and the second column indicates
hat the average relevance score of Hybrid-DeepCom is 3.51. It
an be found that the average naturalness and relevance score of
eCNN outperform Hybrid-DeepCom 0.25 and 0.22 respectively,
hich indicates that the volunteers have a higher agreement
f comments generated by SeCNN methods. Besides, we also
se Cliff’s Delta to quantify the difference between SeCNN and
ybrid-DeepCom in terms of comments’ naturalness and rele-
ance. The Cliff’s Delta value is 0.12 for naturalness and 0.11 for
elevance, which means that the performance of SeCNN has only
weak advantage for volunteers.

Summary for RQ3:
We conducted a manual evaluation of code comments
generated by SeCNN and Hybrid-DeepCom methods. Ex-
perimental results show that SeCNN can generate more
comments with better naturalness and relevance.
11
5.4. Discussions

5.4.1. Discussion on out-of-vocabulary problem
Word embedding encodes the relationships between words

through vector representations of the words. However, due to a
large number of identifiers defined in the source code, the out-
of-vocabulary problem is one of the challenges of neural network
based code comment generation techniques (Hellendoorn and
Devanbu, 2017). Specifically, in natural language processing or
text processing, we usually have a vocabulary. This vocabulary is
either loaded in advance, or defined by researchers, or extracted
from the current data set. On the other hand, if there are some
words in the data set but not in the existing vocabulary, then
these words are out-of-vocabulary (IssamBazzi and Glass, 2000).
In natural language processing area, an effective method to han-
dle out-of-vocabulary problem is limiting vocabulary to the most
common words during data processing. For example, if the size of
words in vocabulary is more than 30,000, such method will only
use the top 30,000 common words, and replace other words by a
special token ⟨nuk⟩.

However, due to the large number of user-defined identifiers
in the source code, which makes the number of unique tokens
in source code very large, this method cannot be used directly in
the source code manipulation area. Moreover, we find that the
identifiers usually consist of several common words. Therefore,
to alleviate the out-of-vocabulary problem, we use camel casing
conversion to split the identifiers of both code tokens and AST
nodes into several words. After that, the number of unique words
in the code token vocabulary and AST node vocabulary become
much smaller. More specifically, in our study, we decrease the
number of unique words in the code token vocabulary from
308,920 to 32,901, and decrease the number of unique words in
AST node vocabulary from 322,933 to 32,570.

Bojanowski et al. (2017) used subword information to solve
the out-of-vocabulary problem, which method is very effective
in natural language processing. However, this method cannot
handle the problem of compound words in the code. Gao et al.
(2020) used the copy mechanism to solve the problem of out-of-
vocabulary words in output words. Different from these previous
studies, we need to solve the problem of out-of-vocabulary words
in input words. To verify that the identifier segmentation can im-
prove the performance of SeCNN, we compare the performance of
SeCNN with identifier segmentation and SeCNN without identifier
segmentation. Table 13 shows using identifier segmentation can
achieve better performance than not using identifier segmenta-
tion, and the improvement is 0.63% and 1.131% in terms of BLEU
and METEOR respectively.
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able 12
omparison of the running time of three epochs.
Approach Time (minute)

First epoch Second epoch Third epoch Average

DeepCom 18.34 18.23 18.21 18.26
Hybrid-DeepCom 18.56 18.48 18.50 18.51
AST-attendgru 62.55 61.39 61.29 61.74
SeCNN (Original SBT) 18.51 18.53 18.53 18.52
SeCNN 14.11 13.98 14.15 14.08

Table 13
The average performance of SeCNN with identifier segmentation and SeCNN
without identifier segmentation.
Approach BLEU (%) METEOR (%)

Without identifier segmentation 44.06 25.57
With identifier segmentation 44.69 26.88

5.4.2. Discussion on training time of code comment generation tech-
niques

We further discuss the training time of SeCNN and other
aselines. Since Hybrid-eepcom and AST-attendgru use the code
okens and SBT sequences as the input like SeCNN, so in this
ubsection, we choose them as two baselines. Besides, to verify
he effectiveness of ISBT, we also compare the training time of
eCNN with ISBT sequence replace and SeCNN with original SBT
equence. Table 12 shows the training time of three epochs of
hese four techniques. Since the training time of each epoch of
he neural network is similar, we choose the first three epochs
or comparison.

As shown in Table 12, SeCNN with ISBT has the least training
ime. Compared with SeCNN (original SBT), we find that using
SBT can reduce the training time of SeCNN by about 23.97%,
hich proves that using ISBT can obviously improve the efficiency
f SeCNN.
Compared with Hybrid-DeepCom, the training time of SeCNN

s reduced by about 23.93%. In the encoder stage of the Hybrid-
eepCom, it uses a layer of GRU network, while SeCNN (original
BT) uses a 9-layer CNN network. The experimental results show
hat CNN needs less training time than GRU. Compared with
eepCom, the training time of SeCNN is reduced by about 22.89%.
he experimental results show that CNN needs less training time
han GRU. Besides, it also can be seen that AST-attendgru has the
ongest training time, and the reason is that it predicts one word
t a time and does not use RNN-based decoding to generate code
omments.

.4.3. Discussion on the influence of the hidden size on SeCNN
The hidden size is an important parameter of the neural net-

ork and has a significant impact on the performance of the
rained neural network model. This parameter includes the hid-
en state of the LSTM and the size of the word embedding vector.
n this section, we want to discuss the impact of this parameter
n the performance of SeCNN. Fig. 9 shows the performance with
ifferent parameter values. To ensure the fair comparison of the
xperiment, the value of parameters is set to the same except the
idden size parameter.
Fig. 9 shows that the value of BLEU and METEOR increases

with the increase of the hidden size. That means, increasing the
value of hidden size can effectively improve the performance of
our proposed method SeCNN. Moreover, We also find that as
the value of the hidden size increases, the growth rate of BLEU
and METEOR becomes slower, and when the value of hidden
size increases to 500, the performance of the trained model
almost converges. There is no doubt that the increase in the
hidden size can increase the cost of model training. Therefore,
we comprehensively set the value of the hidden size to 500 in
our experimental study.
12
Fig. 9. Different hidden-size performance on SeCNN.

Fig. 10. SeCNN performance on different amounts of training data.

5.4.4. Discussion on the impact of the size of training data on SeCNN
Deep learning often requires a reasonable size of the training

data. If the size of the training data is too small, the neural
network model may not achieve dependable performance, which
will lead to inaccurate comments generation. To know how much
data is needed before SeCNN can work, we further discuss the
impact of the training set size on the performance of SeCNN.
Fig. 10 shows the performance of SeCNN for different sizes of the
training data. To ensure the fair comparison in our study, we set
all parameters the same value except for the size of the training
data.

In Fig. 10, we can find that with the increase of the training
data, the performance of SeCNN is getting better. Because the
more training data, the easier it is for SeCNN to learn the rela-
tionship between code and comments. Moreover, we find that
when the size of the training data is less than 80% (55,766), the
performance of SeCNN is very poor, which also shows that at least
80% (55,766) of the training data is required before SeCNN can
work efficiently.

5.4.5. Discussion on the impact of the network depth
Furthermore, we also conduct empirical studies to investigate

the impact of the setting of network depth parameter on the
model performance, since recent studies show that the network
depth is of crucial importance (He et al., 2016; Simonyan and Zis-
serman, 2014; Szegedy et al., 2015). Fig. 11 lists the performance
results of SeCNN with different network depths. From Fig. 11, it
can be found that the setting of the network depth parameter has

a slight impact on the performance of SeCNN.
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Fig. 11. Different network depths performance on SeCNN.

6. Threats to validity

In this section, we discuss the potential threats to our study.

.1. Internal validity

One threat to internal validity is the implementation errors
f our code. To alleviate this issue, we have carefully performed
ode inspection and software testing on our code. Moreover, we
lso release our source code for other researchers to replicate
ur study. Another threat to internal validity is the bias in the
e-implementation of the baselines. To alleviate this threat, we
e-implemented some baselines by using the same experimental
etting as the baselines. However, their settings may not be
uitable for the dataset we use.
Besides, threats concern factors internal to our study that

ould affect the empirical results. The performance of our method
ay depend on the hyperparameter configuration. Hyperparame-

er settings of our proposed method mainly come from optimiza-
ion on the validation set and baselines’ hyperparameter value,
hich we discussed in Section 4.6.

.2. Construct validity

The first construct validity related to metrics. To reduce the
mpact of evaluation measures, we used two machine translation
etrics that are BLEU and METEOR. BLEU and METEOR have been

widely used in the machine translation tasks.
The second construct validity related to the dataset. The

dataset used in the paper has 9.7k items, and each item is a ⟨code,
comment⟩ pair. However, we cannot trace back items to the
projects due to data limitations. Therefore, the proposed approach
might work remarkably well for certain projects and poorly for
others.

The third construct validity is related to the quality of com-
ments. To mitigate the impact of code quality, we just select
the comment about the Java method in the first sentence of
Javadoc, just like the previous study on code comment genera-
tion. However, explaining a piece of code often requires a lot of
comments. The chosen dataset was collected by Hu et al. (2018b)
on GitHub. Hu et al. (2018b) used heuristic rules to reduce noise
in comments. Since the comments were not updated in time after
the code was updated, there are still some code and comments
that do not match the dataset.
13
6.3. Conclusion threats

The conclusion threat is related to the dataset splitting
method. We split the dataset into the training set, the validation
set and the test set and the percentage are 80%, 10%, and 10%.
The split strategy is consistent with the previous code comment
generation studies (Hu et al., 2018a,b; LeClair et al., 2019; Wei
et al., 2019). Moreover, to alleviate possible sampling bias in
random shuffle and sampling, we conducted three experiments
independently, and we redivided each experiment randomly.

The second conclusion validity is related to our experiment
times. Especially, we run the experiment three times. Conducting
more experiments can increase the generalization of the exper-
imental results, but it will take too much time to conduct a
ten-fold cross-validation technique with our existing GPU re-
sources. Therefore, our experiment settings are consistent with
many existing studies in this field (Hu et al., 2018a; LeClair et al.,
2019; Hu et al., 2019), so the threat of not using the ten-fold
cross-validation model validation technique is limited.

7. Related work

7.1. Deep code representation

Deep learning algorithms are commonly used in the field of
image processing (Ren et al., 2015) and natural language process-
ing (Bao et al., 2019). In recent years, many researchers try to
employ deep learning algorithms to solve software engineering
problems, where deep code representation is one of the main
challenge (Zhang et al., 2019).

Many researchers have proposed a set of approaches to do
deep code representation, which include attention unit (Iyer et al.,
2016), sequence-to-sequence (Gu et al., 2016), and CNN (Mou
et al., 2016), etc. For example, Iyer et al. (2016) used attention
unit to calculate the distribution representation of code segment
and then employed neural networks to generate code comments.
Gu et al. (2016) used a sequence-to-sequence model to learn
medium vector representations of code-related natural language
queries, which are further utilized with neural networks to pre-
dict related API sequences. Li et al. (2015) used heap nodes to
learn distributed vector representations, and then utilized them
to synthesize candidate formal specifications for the code that
generates the heap. Mou et al. (2016) employed a custom CNN
to learn features form code fragments and obtained a distributed
vector representation, and then they tried to restore the solution
to the problem mapping by classification.

These previous approaches are transferred from natural lan-
guage processing approaches. Different with these problems, code
representation is a kind of long-dependency problem, where tra-
ditional natural language processing approaches have limitations
on solving it. In our study, we use source code tokens-based
CNN and AST-based CNN to capture semantic information from
source code, which can effectively alleviate the long-dependency
problem.

7.2. Language models for source code

In recent years, language models for source code become
the fundamental part and have been successfully used in many
software engineering tasks, including fault detection (Ray et al.,
2016), code summarization (Iyer et al., 2016), code clone detec-
tion (Yu et al., 2019; White et al., 2016), program repair (Gupta
et al., 2017), and code generation (Rabinovich et al., 2017).

Hindle et al. (2012) are the first to propose a n-gram based
language model for source code, and they also proved that such
model can be used in most software. Allamanis et al. (2014)
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eveloped a framework that learns the code rules of a code base
nd then used the n-gram model to name Java identifiers. Gu
t al. (2016) used sequence-to-sequence deep neural networks to
earn medium vector representations of natural language queries,
hich are used to predict related API sequences. Yin and Neubig
2017) established a grammar-based neural network model for
utomatic code generation.
In our study, we propose a novel approach SeCNN, which de-

igns several novel components to learn the semantic information
rom source code and form an effective neural network-based
anguage model to generate comments for Java methods.

.3. Code summarization

Code Summarization is a novel task in software engineering,
hich aims to generate natural language descriptions for source
ode (Wong et al., 2015; Sridhara et al., 2010; LeClair et al.,
020; Fowkes et al., 2017; Movshovitz-Attias and Cohen, 2013;
hido et al., 2019). In recent years, many researchers pay a lot of
ttention and propose many approaches to handle this problem.
hese approaches can be divided into two groups, template-based
ode summarization (Haiduc et al., 2010b,a; Rodeghero et al.,
015; Mcburney and Mcmillan, 2016; Hill et al., 2009) and AI-
ased code summarization (Iyer et al., 2016; Wan et al., 2018;
u et al., 2018a,b, 2019; Wei et al., 2019; Ye et al., 2020).
In template-based automatic code comment generation ap-

roaches, the researchers defined a set of templates and pop-
lated them by the type of target code segment and other in-
ormation. Haiduc et al. (2010b,a) attempted to generate code
omments by calculating the top-n keywords with metrics such
s TF/IDF. Rodeghero et al. (2015) further improved the con-
ent extraction of heuristics and templating solutions by modi-
ying heuristics to mimic how human developers read code with
heir minds. Mcburney and Mcmillan (2016) proposed a Software
ord Usage Model (SWUM) to generate code comments (Hill

t al., 2009).
AI-based code comment generation approaches use neural

etwork algorithms and machine translation models. Iyer et al.
2016) are the first to use neural networks to generate code
omments. They developed a new method called CODE-NN that
tilizes RNNs and distributes annotated words directly to code
okens. CODE-NN can successfully recommend natural language
escriptions corresponds to source code snippets collected from
tack Overflow. Wan et al. (2018) employed deep reinforcement
earning framework to handle code representation and expo-
ured bias problems during the code summarization process. Hu
t al. (2018a) proposed a novel approach DeepCom to generate
escriptive comments for Java methods. DeepCom uses a new
tructure-Based Traversal method to traverse AST and employs
eural Machine Translation (NMT) to train the code comment
eneration model. Hu et al. (2018b) proposed an approach TL-
odeSum, which generates summaries for Java methods with
he assistance of transferred API knowledge learned from an-
ther task of API sequences summarization. Moreover, Hu et al.
2019) extended their work and proposed a deep neural network
o generate code comments for Java methods. Their proposed
pproach Hybrid-DeepCom combines the lexical and structure
nformation of source code and shows better performance than
ther techniques. Liu et al. (2019) extracted call dependencies
rom source code and its related code, and used a model based on
eq2Seq to generate code summarization from source code and
all dependencies. Haque et al. (2020) combined the file context
f the subroutine and the code of the subroutine to enhance
he automatic summary method of the subroutine. The latest
pproach CO3 was proposed by Ye et al. (2020). This approach
s based on an end-to-end model, which employs dual learning
14
and multi-task learning to improve code summarization and code
retrieval.

Our proposed approach SeCNN is a kind of AI-based code com-
ment generation approach. However, different from the previous
approaches, SeCNN uses two CNNs (i.e., source code-based CNN
and AST-based CNN) to alleviate long-term dependency problems
and learn semantic information of source code. Empirical results
also verify the effectiveness of our proposed approach.

8. Conclusion and future work

In this paper, we propose a novel neural network based tech-
nique, SeCNN, for generating code comment of Java methods.
Compared with the existing researches, our method has im-
proved the quality of generated comments. However, in this
paper, the accomplishments of our proposed approach cannot
make it ready in practice. In the future, we will try to further
improve the quality of automated generated code comments.
SeCNN uses CNN to alleviate the long-dependency problem of
source code manipulation, and contains several novel compo-
nents to capture the semantic information of source code. In
particular, we design a source code-based CNN component to
learn the lexical information and an AST-based component to
learn the syntactical information. Then, we use LSTM with an
attention mechanism to decoder and generate code comments.
Comprehensive experiments are conducted on a widely-studied
large-scale dataset of 87,136 Java methods, and the results show
that SeCNN performs better than five state-of-the-art baselines.
More specifically, SeCNN achieves the best performance in terms
of BLEU and METEOR metrics. Compared with other two similar
baselines, Hybrid-DeepCom and AST-attendgru, which also use
source code and AST, SeCNN shows better performance in terms
of efficiency, whose execution time cost is apparently lower than
other two baselines.

In the future, we want to employ program analysis tools to
gather richer information and combine other deep learning-based
approaches to further improve the effectiveness of our proposed
code comment generation approach.
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