
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

SeTransformer: A Transformer-Based Code Semantic
Parser for Code Comment Generation

Zheng Li , Yonghao Wu, Bin Peng, Xiang Chen , Member, IEEE, Zeyu Sun, Yong Liu , Member, IEEE,
and Doyle Paul

Abstract—Automated code comment generation technologies
can help developers understand code intent, which can signifi-
cantly reduce the cost of software maintenance and revision. The
latest studies in this field mainly depend on deep neural net-
works, such as convolutional neural networks and recurrent neural
network. However, these methods may not generate high-quality
and readable code comments due to the long-term dependence
problem, which means that the code blocks used to summarize
information are far from each other. Owing to the long-term de-
pendence problem, these methods forget the previous input data’s
feature information during the training process. In this article, to
solve the long-term dependence problem and extract both the text
and structure information from the program code, we propose a
novel improved-Transformer-based comment generation method,
named SeTransformer. Specifically, the SeTransformer utilizes the
code tokens and an abstract syntax tree (AST) of programs to
extract information as the inputs, and then, it leverages the self-
attention mechanism to analyze the text and structural features
of code simultaneously. Experimental results based on public cor-
pus gathered from large-scale open-source projects show that our
method can significantly outperform five state-of-the-art baselines
(such as Hybrid-DeepCom and AST-attendgru). Furthermore, we
also conduct a questionnaire survey for developers, and the results
show that the SeTransformer can generate higher quality com-
ments than those of other baselines.

Index Terms—Code comment generation, convolutional
neural network (CNN), deep learning, program comprehension,
Transformer.

Manuscript received February 9, 2021; revised July 21, 2021 and December
28, 2021; accepted February 22, 2022. This work was supported in part by
the National Natural Science Foundation of China under Grant 61902015 and
Grant 61872026, in part by the Nantong Application Research Plan under
Grant JC2019106, and in part by the High-Performance Computing Platform
of the Beijing University of Chemical Technology. Associate Editor: B. Xu.
(Corresponding author: Yong Liu.)

Zheng Li, Yonghao Wu, Bin Peng, and Yong Liu are with the Col-
lege of Information Science and Technology, Beijing University of Chem-
ical Technology, Beijing 100013, China (e-mail: lizheng@mail.buct.edu.cn;
appmlk@outlook.com; 1252031372@qq.com; lyong@mail.buct.edu.cn).

Xiang Chen is with the School of Information Science and Technology,
Nantong University, Nantong 226007, China (e-mail: xchencs@ntu.edu.cn).

Zeyu Sun is with the School of Electronic Engineering and Computer Science,
Peking University, Beijing 100871, China (e-mail: szy_@pku.edu.cn).

Doyle Paul is with the School of Computer Science, Technological University
Dublin, D07 EWV4 Dublin, Ireland (e-mail: paul.doyle@tudublin.ie).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR.2022.3154773.

Digital Object Identifier 10.1109/TR.2022.3154773

I. INTRODUCTION

DURING software development and maintenance, devel-
opers often spend much of their time on program com-

prehension. Previous studies have shown that high-quality code
comments can effectively improve a programs’ comprehensi-
bility because the developers can understand the program by
just reading natural-language-based comments [1]. Therefore,
researchers have proposed different automated techniques to
help developers generate code comments for the target programs
and, thus, substantially reduce the effort required for software
maintenance.

These methods were designed to generate code comments
at the class [2] or function level [1], [3]. Initial methods were
usually designed based on handcrafting or information retrieval
techniques. However, with the advancement of deep learning
models and the sharing of many corpora gathered from open-
source projects, researchers gradually turned their attention to
deep learning and proposed some neural-network-based code
comment generation methods. Most of these methods chose
sequence-to-sequence methods for neural network training. For
example, Iyer et al. [4] trained an embedding matrix to represent
each code token in their work and coupled them with a recurrent
neural network (RNN) model through an attention mechanism
to generate code comments. Hu et al. [5] proposed a new
structure-based traversal (SBT) method to serialize abstract syn-
tax trees (ASTs). Then, they proposed a method of automatically
generating code comments based on the RNN.

However, the RNN-based method has limitations in code
comment generation. Some source codes may be very long, and
the RNN-based model may not effectively capture the long-term
dependence between the code tokens due to the long-term de-
pendence problem. Thus, the model cannot recognize the rela-
tionship between the code contexts during the training process,
which results in low-quality comments. In contrast to the RNN,
the Transformer model leverages the self-attention mechanism
to capture a wide range of dependence between texts [6]. Thus,
the Transformer has shown the best performance in the research
field of natural language processing. Moreover, to better utilize
the advantages of neural network technology, we propose a
new Transformer-based method named SeTransformer (syntax-
based Transformer). In particular, the SeTransformer improves
the traditional Transformer model to simultaneously process
the textual information and structural information of software
code. Finally, to speed up network training, we use convolutional

0018-9529 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3938-7033
https://orcid.org/0000-0002-1180-3891
https://orcid.org/0000-0003-1754-3039
mailto:lizheng@mail.buct.edu.cn
mailto:appmlk@outlook.com
mailto:1252031372@qq.com
mailto:lyong@mail.buct.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:szy_@pku.edu.cn
mailto:paul.doyle@tudublin.ie
https://doi.org/10.1109/TR.2022.3154773

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

neural networks (CNNs) to compress the dimensionality of the
data after embedding tokens in the code and its AST before the
model training.

To verify the effectiveness of our proposed method, we con-
duct the experiments on a corpus constructed from large-scale
open-source Java projects, which contain 87 136 Java functions
and the corresponding comments. The Javadoc’s first sentence
is extracted as a comment, and the comments are used to explain
the design purpose and the functionality of functions. Later, we
split this dataset into training sets, validation sets, and test sets by
8:1:1 in our study. To evaluate the performance of the SeTrans-
former, we leverage two performance metrics (i.e., BLEU [7]
andMETEOR [8]) from the neural machine translation (NMT)
domain. The results show that the SeTransformer can perform
significantly better than five state-of-the-art baselines. More-
over, the CNN layer used in the SeTransformer can effectively
reduce the training time without losing accuracy.

To the best of our knowledge, the main contributions of our
study can be summarized as follows:

1) We employ an advanced Transformer model and pro-
pose a novel automated code comment generation method
SeTransformer, which can simultaneously process the
content and structural information of program code and
generate high-quality comments for programs.

2) We propose a dimensionality reduction method for text
sequences, which can reduce the model’s training cost
without significantly decreasing the model performance.

3) We conduct empirical studies on large-scale open-source
projects, and the results show that the SeTransformer can
significantly outperform other five state-of-the-art base-
lines.

4) To facilitate the replication of our study and evaluation of
future code comment generation techniques, we share our
source code and corpus in the GitHub repository.1

The rest of this article is organized as follows. Section II
presents the background of our work. Section III introduces
the framework and details of our proposed method SeTrans-
former. Section IV shows the experimental setup and result
analysis. Section VI discusses the strength of the SeTransformer.
Section VII discusses the threats to the validity of our study.
Section VIII surveys the related studies and emphasizes the
novelty of our study. Finally, Section IX concludes this article.

II. BACKGROUND

A. Languages Models

Our work is based on NMT tasks in the field of natural lan-
guage processing. The language models used in these tasks can
determine word probability and, as a result, can generate whole
sentences [5]. Similar to the language models, our proposed
model SeTransformer aims to generate the code comments by
estimating each word’s probability.

1[Online]. Available: https://github.com/appmlk/SeTransformer

For a sentence x = (x1, x2, . . . , xn), the probability of the
sentence is calculated from the likelihood of each word gener-
ated from the past sentence, i.e.,

P (x) = P (x1)P (x2|x1) · · ·P (xn|xn − 1, . . ., x2, x1). (1)

Based on the above formula, various neural-network-based
models were proposed to handle natural language process-
ing problems. Recently, RNN [9], [10], Transformer [6], and
CNN [11], [12] are three popularly used ones.

1) Recurrent Neural Networks: The structure of the RNN is
a chain, and its input data is a sequence. It can use the entire
history of previous input to guide each output. Therefore, it is
closely related to sequence and list, and it has unique advantages
for sequence information with time relationships.

However, the standard RNN model may suffer from the gra-
dient explosion and disappearance problems during the training
process [13], making the RNN unable to capture the long-term
dependence between the code tokens effectively; thus, the net-
work model is unable to train. Researchers proposed variants of
RNNs (such as long short-term memory [14] and gated recurrent
unit (GRU) [10]) and better neural network models (such as
Transformer [6]) to solve this problem.

2) Transformer: The Transformer is an encoder–decoder
model that only relies on attention for computing the contex-
tual representations for source and target sentences. It avoids
recurring model architectures in the RNN, which can avoid the
disadvantages of the RNN mentioned in Section II-A1.

Since the Transformer [6] is a novel language model and
superior to the RNN language model in terms of performance
and time consumption on model training in the natural language
processing field [9], [10], we use a Transformer-based deep
learning language model to solve code comment generation
problems in this article.

The Transformer model includes many components, the most
critical component of which is multihead attention. Multihead
attention is used to learn the relationship between each word in
a sentence. The model SeTransformer proposed in this article
includes all the standard Transformer components so that we
will introduce them in detail in Section III-C.

3) Convolutional Neural Networks: In previous practice on
code comment generation, the target code may contain many
program statements. Thus, the dimensionality of the input data
is accordingly tremendous. Owing to a large number of neural
network connections, there will be enormous parameters to be
trained. However, a considerable amount of calculation will lead
to huge time cost. Therefore, it is necessary to leverage the CNN
to compress the input data’s dimensionality, thus reducing the
computational complexity.

As shown in Fig. 1, the CNN architecture consists of five
components: input, convolution layers, pooling layers, fully
connected layers, and output. These components can extract
meaningful information from input data while ignoring the
noise.

In practice, a convolution layer aims to utilize a convolution
kernel to slide the kernel over an input tensor’s each area with
the same size as the kernel. Followed by a convolution layer is
a pooling layer, which reduces the input size and, thus, boosts

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://github.com/appmlk/SeTransformer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 3

Fig. 1. Overview of the CNN.

training speed. It keeps essential information for the next layer
while scaling down input. The next layer is the fully connected
layer that outputs the results. By utilizing the difference be-
tween the output and the actual target output to construct a cost
function, we can then train the CNN by the backpropagation
algorithm. Then, we update the model parameters by minimizing
the loss between the network output and the target output.
Finally, the model can learn meaningful information from input
data while reducing the computational cost.

B. Neural Machine Translation

NMT [15] is an end-to-end learning method for automatic
translation between different natural languages, such as English
to Chinese. The most representative deep learning models of
NMT are RNN and Transformer. NMT solves shortcomings
such as manual design function requirements and achieves sur-
prising promising results. It usually includes an Encoder module
and a Decoder module. Here, the Encoder module is used to
encode the input text sequence, and the Decoder module is
used to decode the Encoder module’s output and generate the
corresponding text sequence.

In this article, we leverage the NMT method to train our
neural network because NMT makes it possible to translate
between different natural languages automatically. Meanwhile,
the automatic generation of code comments is a variant of the
translation problem between natural languages. For example,
Hu et al. [5] proved that the NMT method could be applied
to the automatic generation of code comments. Therefore, we
also comply with the common sequence-to-sequence learning
framework for neural network training.

III. OUR PROPOSED METHOD SETRANSFORMER

In this section, we present the overall framework of our
proposed method SeTransformer, which is shown in Fig. 2. Our
proposed method consists of two steps: data processing and Se-
Transformer model training. Specifically, the data preprocessing
step can extract the features of the source code. In this step, the
source code will be extracted into two parts: lexical information
(i.e., code tokens) and structure information (i.e., AST). Later,
the SeTransformer model training step can simultaneously learn
the program’s lexical information and structure information. In
the SeTransformer, we also use the CNN layer to reduce the
length of the input features to improve the training speed. In the
rest of this section, we will show the details of each component
in our proposed method.

A. Features Representation

The inputs of the SeTransformer include code tokens and
its AST. Thus, the SeTransformer can learn lexical information
from code tokens and learn structure information from the AST.
Next, we will describe the details of code tokens and AST
representation.

1) Code Representation: The SeTransformer learns lexical
information from source code tokens. The source code consists
of keywords, operators, identifiers, and symbols. To extract each
code tokens from the source code, we adopt a widely used tool
javalang2 to process the source code. Since the developers can
freely define the identifiers, and these words in the identifiers
usually indicate the features of a function or a variable, and so
tokens’ vocabulary size can be too large, we split each identifier
in the source code according to the camel casing conversion and
convert all code tokens to lowercase to decrease the vocabulary
size. For example, the identifier “calculateAverage” would be
split into “calculate” and “average.”

We also use positional embedding [16] to show tokens po-
sition within the sequence. Because the tokens, ASTs, and
comments of code are sequential data, the order relationship
between words usually affects the entire sentence’s semantic.
However, the self-attention layer of the Transformer model
does not contain position information, which means that the
Transformer model ignores the position information of each part
of the input sequence. Therefore, in order to utilize the location
information to the training, we need to construct the location
information into a sequence with the same dimension as the
input sequence (such as tokens, ASTs, and comments) and then
add it to the input sequence to obtain new input sequence. Finally,
we send the new sequence into the Transformer model so that
the position information can participate in the training.

2) AST Representation: The SeTransformer learns structure
information from the AST. The AST is an abstract representation
of the syntax structure of source code. Previous studies [17], [18]
have proven that the AST is one of the essential features in source
code analysis.

The AST has a tree structure, which cannot be directly used
in neural network training. Hu et al. [5] put forward an SBT
method to traverse ASTs. SBT uses brackets to represent the
AST structure and can restore a tree unambiguously from an
SBT sequence.

However, the sequence generated by SBT is relatively long.
To reduce the sequence’s scale while retaining the input features,
we slightly improve SBT, as shown in Fig. 3. In particular, we
first apply the SBT method to traverse the ASTs to get the
SBT sequence. Then, we replace the brackets with the serial
number of the preorder traversal sequence. Finally, we divide the
SBT sequence into two sequences: the node sequence and the
preorder traversal serial number sequence. We utilize the node
sequence as input embedding and employ the serial number as
the positional embedding. Specifically, we first embed the node
sequence and the number sequence as vectors and then add the
two vectors together as input data for the neural network.

2[Online]. Available: https://pypi.org/project/javalang/

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://pypi.org/project/javalang/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

Fig. 2. Framework of the SeTransformer.

Fig. 3. SBT method.

Fig. 4. CNNs for the SeTransformer.

B. Convolutional Neural Networks

The multihead attention layer’s memory and computational
requirements grow quadratically with sequence length [19].
When multihead attention processes a sequence of length n,
its time complexity is O(n2). Therefore, the Transformer model
has difficulty in handling long text sequences.

Inspired by the previous studies on image processing, the
CNN can reduce the size of the image (e.g., length and width)
and reduce the amount of calculation [20].

In this article, we consider the CNN, which is mainly used
to shorten the input sequence’s length, as shown in Fig. 4.

We first use a 3 × 1 convolution kernel to extract the features
of adjacent characters. Then, to shorten the input sequence’s
length and maintain the input vector dimension, we use 2 × 1
filter to do Maxpooling for downsampling. After this series of
operations, the input data dimensions can be effectively reduced
while retaining the data features.

C. SeTransformer Structure

Fig. 5 illustrates our SeTransformer model. Different from the
traditional Transformer described in Section II-A2, we improve
the original neural network structure so that the neural network
model can simultaneously input plain code text data and AST
data.

The detailed introduction of each component is illustrated as
follows.

1) Multihead Attention: We construct the multihead atten-
tion component according to the standard Transformer and
reimplement its calculation process [6]. Since it can compute
on the same sequence, we can capture the correlation within the
sequence, and this function can be called self-attention.

The particular attention in Transformer is “scaled dot-product
attention.” The input of scaled dot-product attention consists of
queries (xiW

Q), keys (yjWK), and values (yjWV). For each
attention head, source sequencexi (wherexi∈Rdmodel) and target
sequence yj (where yj ∈ Rdmodel) can be transformed into the
output sequence oi, where oi ∈ Rdk . Thus, we compute the
outputs oi as

oi =

m∑
j=1

αij(yjW
V) (2)

αij =
expeij∑m
k=1 expeik

(3)

eij =
(xiW

Q)(yjW
K)T√

dk
(4)

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 5

Fig. 5. Structure of the SeTransformer model.

where αij is a weight coefficient. WV , WQ, and WK are the
parameters that are unique per layer and attention head. After
the operation of multihead attention, we can extract the internal
correlation features of input sequences.

2) Residual Connections and Batch Normalization: Resid-
ual connections [21] are mainly used to solve the problem of deep
neural network degradation. Batch normalization [22] keeps the
input of each layer of the neural network in the same distribution
during the deep neural network training process.

Especially, following the previous study [6], we add a layer
of residual connections and batch normalization after each layer
of multihead attention layer and fully connected layer. This kind
of component is labeled as “Add&Norm” in Fig. 5.

3) Encoder: Previous studies usually independently handle
coded AST and code tokens in the Encoder component [23],
[24]; they did not reflect the association within different features
of a program. However, we found some relationship between the
AST and code tokens. For example, the leaf nodes of the AST are
identifiers or operators in code tokens. To learn the relationship
between the AST and code tokens, we use multihead attention
to encode the AST and code tokens jointly.

The input of the Encoder includes SBT with serial number
information and code with position information. First, to learn
the correlation within SBT nodes, we use the SBT sequence
as the source sequence and the target sequence for multihead
attention. Then, apply code tokens to perform the above oper-
ation again to understand the correlation within code tokens.
Besides, to acquire the relationship between the AST and code

tokens, we input the SBT sequence as the source sequence
and the code sequence as the target sequence into multihead
attention, plus using code as the source sequence and SBT as
the target sequence. Next, we also leverage residual connections,
batch normalization, and full connection to complete this neural
network contract. As shown in Fig. 5, we utilize a three-layer
Encoder network. Finally, the Encoder outputs the encoded SBT
and code vectors and then input them into the Decoder.

4) Decoder: The Decoder’s input includes partial comments
with location information, encoded SBT sequences, and code
token sequences. We describe the Decoder based on the Trans-
former [6].

First, to learn the relationship between comments words, we
use the comment sequence as the source sequence and the target
sequence for masked multihead attention. In particular, to ensure
that the predictions for position i can depend only on the known
outputs at positions less than i, we masked multihead attention
to hide the words behind each word.

After that, we implement two more multihead attention to
decode code information and AST information. One uses the
comment sequence as the source sequence and the code sequence
as the target sequence. Another uses the comment sequence
as the source sequence and the SBT sequence as the target
sequence. Next, we also leverage the residual connections, batch
normalization, and full connection. Finally, Softmax outputs the
probability of each word through the Softmax layer.

IV. EMPIRICAL SETUP

A. Research Questions

To evaluate the effectiveness of our proposed method Se-
Transformer, we conduct both a large-scale empirical study and a
human study to evaluate the performance of the SeTransformer.
The designed research questions are introduced as follows.

RQ1: Can SeTransformer outperform state-of-the-art code
comment generation baselines?

We design this RQ to verify the effectiveness of the Se-
Transformer for code comment generation. To answer this RQ,
we conduct a set of empirical studies and compare the Se-
Transformer with five state-of-the-art code comment genera-
tion baselines, including DeepCom [5], Hybrid-DeepCom [24],
AST-attendgru [23], Dual Model [25], and Full Model [26].

RQ2: How does code and comment length affect the perfor-
mance of our proposed method SeTransformer?

We design this RQ to confirm that our method can achieve the
best effectiveness under different corpus situations. In this RQ,
we intend to analyze the source code and comment length on
the SeTransformer method’s effectiveness. To answer this RQ,
we collected and analyzed the experimental results when using
SeTransformer to generate comments for different source code
lengths or code comment lengths.

RQ3: What effect does CNN operation have on the perfor-
mance of the SeTransformer?

We designed this RQ to analyze the influence of the CNN
in the SeTransformer. To answer this RQ, we compared the
performance of the SeTransformer and its model training time
when using CNN and not using CNN.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

TABLE I
STATISTICS OF CORPUS

B. Corpus and Preprocessing

We conduct our experiments on a Java corpus [27]. Ta-
ble I shows the statistics of this corpus. This corpus was col-
lected from GitHub, which contains 87 136 pairs of <method,
comment>. The dataset is split into training, test, and validation
sets by 8:1:1 based on the suggestion by Hu et al. [27]. We
preprocessing the dataset following the studies of Wei et al. [25],
Ahmad et al. [26], and Hu et al. [27]. The first sentence of
Javadoc is extracted as a code comment, and the code comment
is used to explain the function of the Java method. Besides,
identifiers in the Java method are split via camel casing3 to
alleviate the out-of-vocabulary problem.

C. Metrics

We use two machine translation metrics (i.e., BLEU and
METEOR) to evaluate the performance of the SeTransformer.
These metrics have been widely used in the field of NMT [28]
and have now been widely used in the current studies of code
comment generation [25], [26].

1) BLEU :BLEU [7] is a machine translation metric that we
use to evaluate the performance of our proposed method
SeTransformer. The score of BLEU represents the sim-
ilarity between the generated sequence and the reference
sequence. The percentage of BLEU scores ranges from
0 to 100%, and a higher BLEU score indicates a more
similar generated sequence according to the reference
sequence. If two sequences are the same, the BLEU score
is 100%. If two sentences do not have the same word, the
BLEU score is 0. Recent studies [5], [23], [26] already
have widely used BLEU scores to evaluate the quality of
code comments.

2) METEOR:METEOR [8] is also a machine translation
metric. It evaluates the generated sequence by aligning
the generated sequence with the reference sequence and
calculating the sentence-level similarity score.METEOR
employs WordNet4 to calculate the matching relationship
between specific sequences, synonyms, roots, affixes, and
definitions, which can be regarded as the supplement of
BLEU .

3For example, the identifier “hashCode” can be split into “hash” and “code”
and the identifier “isAgentEmpty” can be split into “is,” “agent,” and “empty.”

4[Online]. Available: https://wordnet.princeton.edu/

D. Baselines

We compared the SeTransformer with five baselines, which
achieved state-of-the-art performance in the code comment
generation field [24], [26]. The details of these baselines are
summarized as follows:

1) Baseline 1: DeepCom [5] formulates the code comment
generation task as a machine translation task and uses an
attention-based Seq2Seq model to generate comments of
Java methods. DeepCom uses the SBT method to convert
these ASTs into sequences and takes the SBT sequence as
the model input. To compare the performance of SeTrans-
former and DeepCom, in our study, we reran the code of
DeepCom.

2) Baseline 2: Hybrid-DeepCom [24] is an extended version
of DeepCom, and its performance is better than DeepCom.
Hybrid-DeepCom uses a variant of the attention-based
Seq2Seq model to generate comments for Java methods.
Hybrid-DeepCom combines the source code and the tra-
versed AST sequences to generate the comments. Our
study reran the code of Hybrid-DeepCom mode to perform
the comparison.

3) Baseline 3: AST-attendgru [23] involves two unidirec-
tional GRU layers: one is used to process the words from
source code, and the other is designed to process the AST.
AST-attendgru first uses an attention mechanism to asso-
ciate the words in the output comments with the words in
the code text and then use a different attention mechanism
to associate the comments words with each part of the
AST. In our study, we reran the code of AST-attendgru to
perform the comparison.

4) Baseline 4: The Dual Model [25] is a dual learning frame-
work to train code generation and code summarization
models simultaneously to exploit the duality of them. To
strengthen the duality, Dual Model adopts a new constraint
on the attention mechanism. In our study, we directly use
the experimental results of the corresponding study [25]
to perform a comparison.

5) Baseline 5: The Full Model [26] explores the Transformer
model that uses a self-attention mechanism and has shown
to capture long-range dependence effectively. They addi-
tionally added extra copy attention to the decoder stack
to learn the copy distribution, which can allow the Trans-
former to copy unusual tokens from the source code (e.g.,
function names and variable names) [29] and, therefore,
improve the original Transformer.

To conduct the comparison, we reran the code of Full Model
in accordance with the corresponding study [26].

We employ the original RNN and Transformer as baselines
to evaluate the performance of our proposed method. Ahmad et
al. [26] also employed the original RNN and Transformer. Then,
they conducted experiments on the same dataset as our study.
Therefore, we directly use their experimental results to make the
comparison.

Note that the methods in which we directly use the original re-
sults (i.e., Dual Model, original RNN, and original Transformer)
also use the same dataset and data split method as this article.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://wordnet.princeton.edu/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 7

Thus, we can directly compare their results in this article’s
comparison.

Besides, because the experiments in the papers of DeepCom,
Hybrid-DeepCom, and AST-attendgru were conducted on a
different dataset than the one used in our study, we must rerun
their code on the dataset used in our article to complete the
comparison. This also explains why the results of these methods
in this article differ from their original paper.

E. Hyperparameters

We followed Hu et al. [24] by replacing the constant numbers
and strings in the source code with special tags <num > and <
str>, respectively. We found that about 86% of code comments
are less than 30 words in this corpus, approximately 89% of Java
methods are less than 200 tokens, and 93% of SBT sequences
are less than 300 tokens. Therefore, the maximum length of
code sequence, ISBT sequence, and code comment is set to 200,
300, and 30, respectively. We add two special tokens <start >
and < eos> for each comment. <start > means the start of
the comment, and < eos> means the end of the comment. The
vocabulary sizes of the code tokens, SBT tokens, and comments
are set to 30 000, 30 000, and 23 428, respectively. Finally,
out-of-vocabulary tags will be replaced by <unk>.

Besides, during training, the model is validated every 5000
minibatches on the validation set by BLEU metric, and the
maximum number of minibatches is 500 000, which means
that the reading of samples from the training dataset will be
repeated recursively 500 000 times before the training process
is terminated.

The hyperparameters of the neural network model are es-
sential factors that affect the performance of the model. Our
model has undergone multiple hyperparameter adjustments and
finally selected an optimal parameter combination. To ensure
the fairness of our parameter settings, we only use the training
set and the validation set to adjust the hyperparameters. The
hyperparameters of our model are set as follows:

1) We use the Adam algorithm [30] to train the parameters,
and the minimum batch size (i.e., the number of samples
selected from training examples for one training) is set to
32 due to the GPU memory limitation.

2) The hidden size is set to 768, and the embedded word has
768 dimensions. We future discuss this parameter setting
and comparison in Section VI-A.

3) We use a three-layer Encoder block and a three-layer
Decoder block. The multihead attention setting has eight
heads. Feedforward has 2048 neurons. These parameters
are optimized by the validation set.

4) We train the Transformer model using the Adam opti-
mizer [30], and the initial learning rate is set to 1e-4. The
learning rate is decayed using the rate of 0.99.

5) We use the dropout strategy [31] during the training pro-
cess and set dropout probability to 0.8. This parameter’s
value is optimized based on the validation set.

6) The SeTransformer uses cross-entropy minimization as
the cost function by referencing the work of Hu et al. [24].

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT METHODS

F. Statistical Analysis

1) Hypothesis Testing Method: We use the Wilcoxon signed-
rank test to further assess the trial findings since we conduct ex-
periments between our proposed method and existing baselines
on the same data with the same code and comments.

The Wilcoxon signed-rank test [32] is used as an alternative
hypothesis test when the test data cannot be assumed to be
normally distributed. As a result, it can provide a solid statistical
foundation for comparing the effectiveness of various methods.

2) Effect Size: An effect size is a quantitative measure of the
strength of the association between two variables in a population
or a sample-based estimation of that quantity in statistical anal-
ysis. To quantify the magnitude of difference between the two
groups, we calculate the Cliff’s Delta [33], which is a nonpara-
metric effect size measure. Specifically, we use the Cliff’s Delta
to quantify the difference in terms of BLEU or METEOR
metrics between the SeTransformer and other baselines.

Furthermore, the effect size classifies Cliff’s Delta values
of less than 0.147, between 0.147 and 0.33, between 0.33 and
0.474, and above 0.474 as negligible, small, medium, and large,
respectively.

V. RESULT ANALYSIS

A. Result Analysis for RQ1

RQ1: Can SeTransformer outperform state-of-the-art code
comment generation baselines?

We first use two machine translation metrics (i.e., BLEU
score and METEOR) to measure the difference between auto-
matically generated comments and manually written comments
and then employ five state-of-the-art baselines to verify the
performance of the SeTransformer. Table II lists the overall
results of the SeTransformer model and the five state-of-the-art
baselines. In Table II, it is not hard to find that the SeTransformer
outperforms all the other five baselines. More specifically, the
SeTransformer improves by 4.53–8.90% on BLEU compared
to state-of-the-art baselines and improves by 4.63–8.16% on
METEOR.

The SeTransformer extracts lexical information, and gram-
matical information then encodes them jointly in the Encoder. In
comparison, the shortcomings of these baselines are summarized
as follows:

1) The Dual Model and the Full Model only use lexical
information but ignore grammatical information.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

TABLE III
p-VALUE OF HYPOTHESIS IN SECTION V-A

2) DeepCom only utilizes grammatical information but ig-
nores lexical information.

3) Hybrid-DeepCom and AST-attendgru use lexical infor-
mation and grammatical information. However, the gram-
matical information and lexical information are separately
coded in the model’s Encoder. Thus, the relationship be-
tween lexical and grammar is ignored.

Note that the results in terms of BLEU and METEOR metrics
in the Full-Model-related paper are 44.58 and 26.43%, respec-
tively, and the slight differences are caused by random factors.

The experimental results show that the SeTransformer
achieves the best performance and proves the importance of
lexical information and grammatical information as feature in-
formation in this research field. Therefore, these two features
should be considered simultaneously in the encoding process.

Moreover, after further analysis of the performance between
five state-of-the-art baselines in Table II, we can achieve the
following findings.

1) The performance of Hybrid-DeepCom is better than Deep-
Com, which proves that grammatical information used in
DeepCom cannot generate high-quality comments.

2) Hybrid-DeepCom is superior to ASTattendgru, which
demonstrates that the generation of code comments is
suitable for the encoder–decoder framework.

3) The Dual Model is better than Hybrid-DeepCom, which
shows a correlation between the code generation task and
the comment generation task.

4) The Full Model can achieve the best performance among
the five baselines, which shows that the Transformer
model is better than the RNN model.

Furthermore, we leverage the Wilcoxon signed-rank test to
verify the competitiveness of our proposed method SeTrans-
former. The results of the hypothesis testing are shown in
Table III. Owing to the reason that we only implemented four
baseline methods, we can only conduct hypothesis testing on
these four baselines. The following is the hypothesis used in
our study, H0: In terms of BLEU and METEOR, there is
no significant difference between the SeTransformer and the
other method. This test’s significance threshold is set to 0.05.
Because all of the p-values in Table III are less than 0.05, the null
hypothesis was rejected by the statistical results. These results
indicate that in terms of BLEU and METEOR metrics, the
performance of our proposed method differs significantly from
that of these baselines. Since the results in Table II show that
our method outperforms other baselines, we can conclude that
the SeTransformer can achieve significantly better results than
those of other baseline methods.

TABLE IV
CLIFF’S DELTA BETWEEN THE SETRANSFORMER AND BASELINES

Cliff’s Delta is also used to assess the difference in terms of
BLEU and METEOR metrics between the SeTransformer
and other baselines. The Cliff’s Delta values are less than or
equal to 0.25, which equates to a negligible or small effect size.
As shown in Table IV. The results demonstrate that our method
outperforms existing baselines to a lesser extent.

Summary for RQ1: Experimental results show that the per-
formance of the SeTransformer is better than that of the five
state-of-the-art baselines and two basic baselines. It proves that
lexical information and grammatical information are essential
features in the code comment generation task, and researchers
should consider both the features in the Encoder process of this
field research.

B. Result Analysis for RQ2

RQ2: How does code and comment length affect the perfor-
mance of our proposed method SeTransformer?

Code and comment length is one of the main factors that affect
the performance of the code comment generation model; there-
fore, we further analyze the impact of code and comment length
on the performance of the SeTransformer. We reran three base-
lines, namely DeepCom, Hybrid-DeepCom, and ASTattendgru.
Therefore, we use these three baselines as a comparison to
evaluate the performance of the SeTransformer. Fig. 6 shows the
performance of the SeTransformer and the other three baselines
under different lengths of code and comments.

To make the results of Fig. 6 more concise and significant,
we take the approximate length of the code to study the model’s
performance. We calculated the approximate length as follows:

F (x) =

{
300, x ≥ 300

(�x/10�+ 1) ∗ 10, x < 300
(5)

where F (x) is the length of the code shown on the x-axis of
Fig. 6, and x is the original code length.

Fig. 6(a) shows the impact of code length on the performance
of the four models on the BLEU metric. It can be seen that all
models perform very poorly when the code length is short; this
is because these short code may be incomplete. When the code
length is larger than 200, all models are unstable; this is because
developers will crop too large code; therefore, this kind of sample
size is small, which cannot reflect this interval’s true situation.
From Fig. 6(a), we can find that our model’s performance is the
best. Compared with DeepCom, we notice that except for the first
point, the BLEU of the SeTransformer is higher than DeepCom
at other points. Among the four models, the SeTransformer can
achieve the best performance at 22 points, with a ratio of 73.33%.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 9

Fig. 6. Performance of the SeTransformer and the three baselines under different lengths of code and comments. (a) BLEU scores for different code lengths.
(b) BLEU scores for different comment lengths. (c) METEOR scores for different code lengths. (d) METEOR scores for different comment lengths.

Fig. 6(c) shows the impact of code length on the performance
of the four models on the METEOR metric. As in Fig. 6(a),
when the code length is short, the performance of the model is
low, and when the code length is greater than 200, the perfor-
mance of the model becomes unstable. From Fig. 6(b), we can
find that our model’s performance is the best. Among the four
models, the SeTransformer can achieve the best performance at
20 points, with a ratio of 66.67%.

Fig. 6(b) and (d) shows the impact of code length on the
BLEU and METEOR metrics of the four models. It can be
seen from the figure that our model achieves the best results
on both BLEU and METEOR. Among the four models, the
SeTransformer can achieve the best performance at 30 points
on both BLEU and METEOR, with a ratio of 100%. Besides,
the three baselines models’ performance decreases significantly
when the comment length exceeds 20. In other words, when
faced with the long-term dependence problem, the SeTrans-
former can still achieve the best performance compared with
the other three baselines.

In addition, we use the Wilcoxon signed-rank test to verify
the competitiveness of our proposed method. In other words, we
utilize statistical analysis to determine whether our method’s
polyline in Fig. 6 is significantly higher than that of other meth-
ods. The hypothesis used in this section is specifically specified
as follows, H0: In terms of BLEU and METEOR, there is
no significant difference between SeTransformer and the other
methods in terms of various code lengths or comment lengths.
Table V shows the p-value ofH0 for four different methods using
the Wilcoxon signed-rank test. Because the p-value in most cases
is less than 0.05, the preceding results that the SeTransformer
can produce significantly superior performance than DeepCom,

TABLE V
p-VALUE OF HYPOTHESIS IN SECTION V-B

Hybrid-DeepCom, and AST-attendgru are safe to accept. The
Full Model does not differ significantly from our solution in
this research question, indicating that the advantages of the Full
Model can achieve better performance under certain code or
comment lengths.

In addition, Table VI compares the Cliff’s Delta between the
SeTransformer and alternative techniques for various code or
comment lengths using the BLEU and METEOR metrics.
The results in Table VI show that, in the majority of cases,
the SeTransformer outperforms alternative baselines in terms of
BLEU andMETEORmetrics for different code and comment
lengths.

Summary for RQ2: When considering the impact of code
and comment length on the model, the performance of the
SeTransformer is better than that of the other three baselines.
Besides, the experimental results also show that when the code is
too short, the SeTransformer performs poorly because the source

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

TABLE VI
CLIFF’S DELTA UNDER DIFFERENT CODE LENGTHS AND COMMENT LENGTHS

TABLE VII
IMPACT OF THE CNN ON THE PERFORMANCE OF THE SETRANSFORMER

code with a shorter length is incomplete, which will affect the
performance of the code comment generation method.

C. Result Analysis for RQ3

RQ3: What effect does CNN operation have on the perfor-
mance of the SeTransformer?

We add a CNN layer to compress the dimensionality of the
input data before the input data enters the Transformer model.
In this section, we will analyze the impact of the CNN on the
performance of the SeTransformer.

Note that regardless of whether the neural network structure
contains the CNN, the training process must be completed in its
entirety and will not be aborted. The CNN’s focus on reducing
training time is reflected in each feedforward and feedback
operation of the neural network, rather than limiting the number
of training times, thereby reducing the total time required for
training.

To study CNN’s performance on the SeTransformer, we com-
pare the SeTransformer with CNN (used in the previous exper-
iment) and the SeTransformer without CNN. Table VII shows
the final comparison results. We found that the SeTransformer
with CNN and the SeTransformer without CNN are very similar
in BLEU and METEOR metrics, which shows that adding a
CNN layer to compress the dimensionality of the input data will
not affect the performance of the model. However, in terms of
training time, the SeTransformer without CNN takes 3745 min to
train a model, but the SeTransformer with CNN only takes 2344
min, which shortened training time by 37.41%. Compared with
the SeTransformer without CNN, although the SeTransformer
with CNN has one more CNN layer network, the training time
of the SeTransformer is shorter, which shows that using CNN
to compress the data dimension can reduce the training time.

To verify whether there are significant differences in com-
ment generation performance after using CNN, we use the
Wilcoxon signed-rank test. In particular, we want to know if

TABLE VIII
IMPACT OF HIDDEN SIZE ON THE PERFORMANCE OF THE SETRANSFORMER

the evaluation metrics’ values have decreased significantly after
using CNN. First, the confidence level is set to α = 0.05, and
we define the null hypothesis (H0) as that the performance of
the SeTransformer without CNN is significantly better than the
SeTransformer with CNN in terms of BLEU and METEOR
metrics.

Finally, the p-value of the Wilcoxon signed-rank test is
0.00001 in terms of BLEU metric, which is less than 0.05;
therefore, we reject H0 and accept H1. That is, the performance
of comments generation is not significantly reduced after using
CNN in terms of BLEU metric. For METEOR metric, the
p-value is 0.10196, which is larger than 0.10196; therefore, H0

is adopted in this case. That is, the two approaches produce
similar results.

Summary for RQ3: Using our proposed CNN layer in the
SeTransformer can save 37.41% of the training time. The per-
formance of the SeTransformer model would not be significantly
reduced only in terms of BLEU metric.

VI. DISCUSSIONS

A. Impact of Hidden Size

The hidden size is an essential parameter of neural networks.
It significantly impacts the performance of the trained neural
network models. We performed a sensitivity analysis by adjust-
ing the size of the neural network’s hidden layer. To ensure a
fair comparison of the experiments, we set the same value for
the parameters except for the hidden size, and the results are
presented in Table VIII.

As shown in Table VIII, the value of BLEU and METEOR
generally increases with the increase in the hidden size, which
means that expanding the scale of hidden size can effectively
improve the performance of the SeTransformer.

However, we also observed that the growth rate of BLEU
and METEOR becomes smaller with the hidden size increase
to a certain value. In particular, although BLEU can reach the
highest value when hidden size is 768, the value of METEOR
slightly reduces. Therefore, we set the scale of hidden size to
768 in our experiment.

B. Human Evaluation

In this section, we conduct a manual evaluation on the quality
of comments generated by the Full Model and the SeTrans-
former because, sometimes, the automated evaluation formula
is not equal to the real evaluation of developers. Therefore, we
conducted a human survey to evaluate the automated comment

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 11

Fig. 7. One page in the questionnaire of manual evaluation.

generation method by real developers. We hired four volunteers
to participate in our manual evaluation (including undergradu-
ates, masters, and Ph.D. students), each with two to five years of
programming experience and large-scale project development
experience.

To balance efficiency and experimental credibility, we used
algorithms commonly used in sampling survey research [34] to
calculate the number of comments that need to be extracted for
evaluation. As described in Section IV-B, 87 136 Java programs
are used in this experiment; it is almost impossible for the
volunteers to mark all of them. The calculation formula of the
sample size MIN is computed as follows:

MIN =
n0

1 + n0−1
populationsize

(6)

n0 =
Z2 × 0.25

e2
(7)

where populationsize indicates the number of code comments,
Z means the confidence level, and e is the error margin. In our
experiment, we set the value of Z to 95% and the value of e to
0.05. Then, the calculated value of MIN is 384.

We invite five volunteers with extensive development exper-
tise to provide feedback for our comparison. We followed the
experimental design principles5 and conducted a within-subject
experiment, as each volunteer will respond to the same questions
under the same conditions.

We randomly chose 384 pairs of prediction outcomes and
their references from the test set. The questionnaire contains 384
pages, and each page contains an input source code, comments
generated by the SeTransformer and the Full Model, and a
hand-written reference comment. We send each volunteer a copy
of the 384-page questionnaire and invite them to evaluate two
comments for each code. Additionally, to guarantee fairness, we
randomly rank the comments created by the two methods on each
page and remove their tags to ensure that the volunteers cannot
know whether the comments are generated by the Full Model
or the SeTransformer. During the manual evaluation, volunteers
can resort to search engines (such as Google) for related material
and unfamiliar concepts.

To enable volunteers to assess the quality of generated com-
ments from a variety of perspectives, we adopt Gao et al.’s

TABLE IX
MANUAL ANALYSIS

approach of considering two perspectives: naturalness and rel-
evance [35]. Naturalness relates to the grammatical accuracy
and fluency of generated comments, i.e., whether the content
of a comment is easily readable and understandable by humans.
Relevance relates to the relationship between the generated com-
ments and the input code, i.e., whether humans can deduce the
code’s design intent from the corresponding comment. Fig. 7 de-
picts one page of our questionnaire on which volunteers should
read the input code, reference comment, and two generated
comments. Then, the volunteers should grade the naturalness
and relevance of the two generated comments by using a scale
of 1–5 (5 is the best).

Finally, we calculate the mean results of the five volunteers’
feedback, as shown in Table IX. For instance, the number 3.79
in the second row and the second column indicates that the
Full Model’s average relevance score is 3.79. It is discovered
that SeTransformer’s average naturalness and relevance scores
outperform those of the Full Model by 0.19 and 0.16 points, re-
spectively, which means that the volunteers prefer the comments
generated by the SeTransformer. Besides, we employ Cliff’s
Delta [33] to evaluate the difference in naturalness and relevance
of comments between the SeTransformer and the Full Model.
Cliff’s Delta values for naturalness and relevance are 0.11 and
0.09, respectively, indicating that the SeTransformer has a weak
advantage when compared with the Full Model.

C. Explanation of How the SeTransformer
Generates Comments

The attention map in Fig. 8 shows an example of how the
SeTransformer generates a comment. Specifically, the tokenized
input is shown on the y-axis, while the comment generated

5[Online]. Available: https://opentextbc.ca/researchmethods/chapter/
experimental-design/

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://opentextbc.ca/researchmethods/chapter/experimental-design/
https://opentextbc.ca/researchmethods/chapter/experimental-design/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 8. Attention map for the correct comments generated by the SeTrans-
former.

output is displayed on the x-axis. The attention map represents
the relationship between the input code tokens and the generated
comments. The color range of the color block on the right side
of the image is light (light blue) to dark (dark blue). The deeper
the color, the higher the correlation degree of the token.

This attention map can help us understand how the SeTrans-
former generates specific words for input tokens. For example,
the words “renderer” in comments are generated because of the
tokens “renderer” in inputs (labeled 1, 3, and 4 in Fig. 8), which
means that the SeTransformer can capture the keywords in the
input tokens and keep them in the output comments. Besides,
the plural word “multiple” in comments is generated because
the “renderers” in the input tokens is plural (labeled 2 in Fig. 8),
which means that the SeTransformer can capture the difference
between singular nouns and plural nouns and present them in
the output comments. Therefore, this example can explain how
the SeTransformer can generate correct comments.

To further investigate the effect of code features on SeTrans-
former performance, we attempted to conduct qualitative study
by analyzing the training data and output comments.

Three different cases we chose to analyze are listed as follows:
1) Perfect case: The manual comment in this case is “get

a sorted array containing all column values for a given
tuple iterator and field,” and the comment generated by
the SeTransformer is exactly the same as the manual
comment. We counted the number of occurrences of the
key phrases “get a,” “a sorted,” and “sorted array” in the
training set as 317, 37, and 26, respectively. Therefore, the
neural network trained by this training set will be familiar
with the generation process of this series of phrases.

TABLE X
IMPACT OF THE CONNECTION MODEL ON THE PERFORMANCE OF THE

SETRANSFORMER

2) Medium case: The manual comment for this case is “com-
pute the union size of two bitsets,” while the comment
generated by the SeTransformer is “compute the intersec-
tion size of two bitsets.” It can be seen that the difference
between the two comments appears in the middle part of
the sentence. We counted the number of occurrences of
the phrase “compute the union” in the training set only
once, while the number of occurrences of “compute the
intersection” was nine. It can be seen that the imbalance of
the data causes the neural network to deviate when judging
the two words “union” and “intersection.”

3) Poor case: According to our observations, cases with poor
performance are generally wrong in the first word, which
ultimately results in a huge difference between the entire
sentence and the manual comment. For example, the be-
ginning of a human comment is the word “ignorable,” and
this word only appears twice as the beginning of a sentence
in the entire training set. The SeTransformer predicts the
beginning of this sentence as “the,” which occurs as the
beginning of a sentence 666 times. This imbalance caused
the neural network to forget “ignorable,” and in the end,
the deviation of the first word led to errors in the entire
comment generation process.

From the above analysis, we think the balance of the dataset
plays a crucial role in the effectiveness of the SeTransformer.
Therefore, we will apply a more balanced dataset to our method
in our future work.

D. Impact of the Encoder and Decoder’s Connection Mode

As illustrated in Fig. 5, the default connection method for the
encoder and the decoder in the SeTransformer proposed in our
study is to transfer the code token information first, followed
by the SBT information. To determine the influence of this
order on SeTransformer’s effectiveness, we reverse the order
of data transfer (i.e., transfer SBT information first, followed by
code token information) and reconduct the experiment. Finally,
Table X summarizes the experimental results.

In Table X, the term “Readjusted SeTransformer” refers to
the neural network structure that alters the order in which data
are transferred between the encoder and the decoder. As can be
found in Table X, the effect of the readjusted SeTransformer is no
worse than the original SeTransformer. Therefore, the connec-
tion mode of the encoder and the decoder in the SeTransformer
does not lead to performance loss.

E. Impact of CNN Convolution Kernel Size

Our proposed SeTransformer incorporates a CNN component
prior to the encoder, lowering the dimensionality of the input

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 13

TABLE XI
IMPACT OF THE CNN SIZE ON THE PERFORMANCE OF THE SETRANSFORMER

TABLE XII
IMPACT OF DATA TYPE ON THE PERFORMANCE OF THE SETRANSFORMER

data and increasing the neural network’s training speed. A larger
convolution kernel results in a better compression ratio, which
allows for a reduction in the dimensionality of the input data. A
well-chosen convolution kernel can lower the dimensionality of
the input data while retaining its features. However, an exces-
sively large convolution kernel will cause the input data to lose
its original information.

In order to study the influence of the size of the convolution
kernel on the SeTransformer, we set the convolution kernel from
the original 3×1 to 5×1, 10×1, and 20×1 and then conducted
experiments. The experimental results are shown in Table XI.

As shown in Table XI, the SeTransformer performs almost the
same with different values of CNN’s convolution kernel size.

F. Impact of Data Type

To investigate the influence of input data type on our proposed
SeTransformer, we conducted an experiment in this subsection.
Specifically, we train the SeTransformer using only code tokens
or SBT sequences. When one data type is used, the other input
is a sequence of zeros. Table XII summarizes the experimental
results.

As shown in Table XII, the SeTransformer can achieve the
best performance when two types of data are used together.
Therefore, this experiment demonstrates that combining two
types of data together can increase the SeTransformer method’s
performance.

VII. THREATS TO VALIDITY

In this section, we discuss the potential threats to our study.

A. Internal Validity

One threat to internal validity comes from possible errors
in our experimental program code. To avoid this problem, we
carefully checked the code and conducted a small-scale test
before the formal experiment. Besides, we implemented our
neural network model based on the well-known open-source

machine learning platform TensorFlow6 to ensure the neural
network’s correct operation.

Besides, the replication error may cause the results of the
baseline method in this article to be inaccurate. To mitigate this
threat, we used the same parameter settings as the studies they
conducted.

Another threat to internal validity is that the performance of
our method may depend on the hyperparameter configuration.
In this article, hyperparameter settings mainly come from vali-
dation set optimization and previous studies, which is discussed
in Section IV-E.

In addition, the internal validity of the SeTransformer is
threatened by the unpredictability of how the connection be-
tween the Encoder and the Decoder influences the experimental
outcomes. In this article, we complete the network model by
sequentially inputting two types of data into the Decoder. How-
ever, there are additional implementations of joint learning that
are possible (e.g., using a simple merged feedforward network
or a bilateral neural network). To address this threat, we intend to
incorporate more joint learning approaches into our future work
to go deeper into discovering improved connections between
the Encoder and the Decoder and the causes for their effect
differences.

B. External Validity

The external validity relates to the corpus we collected for
our experiment. This corpus was gathered from many open-
source Java projects, and their comments from GitHub refer to
previous comments generation studies [25]–[27]. Although the
previous research has removed the corpus’s noises, the corpus
contains the same comment function pairs that could not match
because of programs’ rapid updations. In the future, we want
to collect more programs with higher quality comments for
experiments.

C. Construct Validity

The construct validity relates to the suitability of the evalua-
tion metrics used in our study. We utilize two evaluation metrics,
namelyBLEU andMETEOR, because these metrics have been
widely used in previous NMT and natural language process
domains [25], [26], [28].

VIII. RELATED WORK

A. Code Summarization

Code summarization improves the comprehensibility of the
source code by generating alternative natural language descrip-
tions for the source code. Code summarization methods can be
divided into two categories: template-based code summariza-
tion [2], [36]–[40] and artificial intelligence (AI)-based code
summarization [23], [24], [41], [42].

Template-based automatic generation of code comments is the
earliest automatic generation method of code comments, which
can use various intermediate information extracted to generate

6[Online]. Available: https://www.tensorflow.org/

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

https://www.tensorflow.org/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

comments for the source code. The software word usage model
(SWUM) [?] is a technique for finding the part of speech of
words in the code. Sridhara et al. [1] adapted the SWUM to use
templates to create short comment phrases for the source code.
Dawood et al. [43] defined some templates of program structure
information and used the templates to generate comments for
the source code. For example, a template defines the number of
interfaces in the package or the parameter types used by methods.
Wang et al. [44] use natural language processing to identify
actions, topics, and auxiliary parameters to fill in templates and
some basic information.

With AI technology development, AI-based code comment
generation methods have become more and more popular. AI-
based code comment generation methods are similar to machine
translation, using neural network technology to generate code
comments. Iyer et al. [4] were the first to try to use neural network
technology to generate code comments and proved that neural
networks could be used in the field of code comment genera-
tion. They developed a new AI-based code comment generation
method called CODE-NN, which uses the RNN with an attention
mechanism to generate natural language descriptions for C#
code snippets and SQL queries. CODE-NN uses the source code
as plain text as the input of the neural network. Hu et al. [5]
propose an SBT method to traverse ASTs and generate SBT
sequence. They regard the code comment generation task as a
machine translation task and propose a novel code comment
generation method called DeepCom. This method takes SBT as
input. Hu et al. [24] proposed Hybrid-DeepCom to automatically
generate natural language descriptions for the java method,
which is an extension of DeepCom. Compared with DeepCom,
Hybrid-DeepCom adds lexical information to the input. More-
over, it proves that lexical information is helpful to the generation
of code comments. Wei et al. [25] argue that code generation and
code summarization are related to each other and joint training of
two models can learn this relationship. Therefore, they designed
a dual learning framework to train both the code summarization
and code generation models to take advantage of their duality.
Wei et al. [41] argue that neural code comments generation
methods tend to generate high-frequency words. Therefore, they
concluded that the neural model was not sufficient to generate
comments only based on the source code. And they combine
information retrieval and neural network technology to propose
a comment generation framework, namely Re2Com. Ahmad
et al. [26] propose a Transformer-based method to generate
natural language descriptions for java methods. This method
uses the Transformer model to learn the order of tokens in a
sequence or model the relationship between tokens. LeClair et
al. [45] developed a method for generating comments that use
a graph-based neural architecture that is more comparable to
the default structure of the AST. Wang et al. [46] presented a
novel strategy for generating code comments that incorporates
numerous code features, such as type-augmented ASTs and
program control flows, and the experimental results outperform
existing approaches.

We introduced an AI-based code comment generation method
called SeTransformer. Unlike the previous method, the SeTrans-
former uses the Transformer framework to learn the semantic

information of the code. The empirical results also verify the
effectiveness of our proposed method.

B. Language Models for the Source Code

The language model is a formal system. The objective facts
of the language can be automatically processed by the computer
after being described by the language model. Therefore, the
language model is of great significance to the information pro-
cessing of natural language. In recent years, the language model
for the source code has been successfully applied to many soft-
ware engineering tasks, such as code comment generation [26],
clone [47]–[49], code generation [17], [50], [51], and defect
prediction [52]–[54].

Hindle et al. [55] first tried to model the language model of the
source code and proved that the model did capture the advanced
statistical laws of the software at the n-gram level. Allamanis et
al. [56] propose a framework called NATURALIZE to solve the
problem of local convention coding convention reasoning. The
framework can provide some suggestions to improve the style
consistency of the code base. NATURALIZE can be applied to
rule-based formatter inference rules. Mou et al. [57] proposed a
tree-based CNN framework called TBCNN, which is based on
the AST of the program. They also put forward the concept of
“continuous binary tree.” The TBCNN model is a general archi-
tecture and can be used in many software engineering tasks (code
comment generation and clone detection). Yin and Neubig [58]
propose a grammar-based neural network framework to generate
code for natural language AST. This method generates the AST
by applying actions in the grammar model.

Our research proposes a novel code comment generation
method called SeTransformer, which uses and improves the
Transformer framework. This method can generate correspond-
ing comments by learning the semantic information of the code.

IX. CONCLUSION

In this article, we proposed a code comment generation
method SeTransformer based on the Transformer neural network
structure. In particular, we used the source program’s lexical and
grammatical information by inputting the linguistic data and
the encoded AST information. Moreover, we leveraged CNN
to compress the dimensionality of the data for speeding up the
neural network’s training process. Finally, the SeTransformer
used an improved transformer model to perform encoding and
decoding, thus generating useful and readable code comments.

To verify the performance of our method, we conducted
a number of empirical studies on a public, large-scale, and
open-source corpus. The experimental results showed that the
performance SeTransformer is significantly better than that of
the other five state-of-the-art baseline methods. Specifically, the
SeTransformer’s effectiveness led by 8.9% highest in terms of
the BLEU metric and led by 8.16% highest in terms of the
METEORmetric. Besides, we also conducted the questionnaire
survey and the results showed that the SeTransformer can gen-
erate high-quality comments and lead the comparison method
Hybrid-DeepCom by 0.35 points.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: SETRANSFORMER: A TRANSFORMER-BASED CODE SEMANTIC PARSER FOR CODE COMMENT GENERATION 15

In the future, we plan to extract more features from the
program’s dynamic execution information and combine them
with the more acceptable neural network structure to generate
more accurate code comments.

REFERENCES

[1] G. Sridhara, E. Hill, D. Muppaneni, L. L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java methods,”
in Proc. 25th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2010, pp. 43–52.

[2] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in Proc. 21st Int. Conf. Prog. Comprehension, 2013, pp. 23–32.

[3] P. W. McBurney and C. McMillan, “Automatic documentation generation
via source code summarization of method context,” in Proc. 22nd Int.
Conf. Prog. Comprehension, 2014, pp. 279–290.

[4] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proc. 54th Annu. Meeting Assoc.
Comput. Linguistics, 2016, pp. 2073–2083.

[5] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,”
in Proc. 26th Conf. Prog. Comprehension, 2018, pp. 200–210.

[6] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst, 2017, pp. 5998–6008.

[7] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, 2002, pp. 311–318.

[8] S. Banerjee and A. Lavie, “METEOR: An automatic metric for MT evalua-
tion with improved correlation with human judgments,” in Proc. Workshop
Intrinsic Extrinsic Eval. Measures Mach. Transl. Summarization, 2005,
pp. 65–72.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[10] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2014, pp. 1724–1734.

[11] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proc. Conf. Empirical Methods Natural Lang. Process., 2014,
pp. 1746–1751.

[12] J. Gehring, M. Auli, D. Grangier, and Y. N. Dauphin, “A convolutional en-
coder model for neural machine translation,” in Proc. 55th Annu. Meeting
Assoc. Comput. Linguistics, 2017, pp. 123–135.

[13] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., 2013,
pp. 1310–1318.

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proc. NIPS
2014 Workshop Deep Learn., 2014.

[15] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.

[16] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2019, pp. 4171–4186.

[17] Z. Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A grammar-based
structural CNN decoder for code generation,” in Proc. 33rd AAAI Conf.
Artif. Intell., 2019, pp. 7055–7062.

[18] V. Jayasundara, N. D. Q. Bui, L. Jiang, and D. Lo, “TreeCaps: Tree-
structured capsule networks for program source code processing,” 2019,
arXiv:1910.12306.

[19] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long se-
quences with sparse transformers,” 2019, arXiv:1904.10509.

[20] F. Jiang, W. Tao, S. Liu, J. Ren, X. Guo, and D. Zhao, “An end-to-end
compression framework based on convolutional neural networks,” IEEE
Trans. Circuits Syst. Video Technol., vol. 28, no. 10, pp. 3007–3018,
Oct. 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[23] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in Proc. 41st Int.
Conf. Softw. Eng., 2019, pp. 795–806.

[24] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Softw. Eng.,
vol. 25, no. 3, pp. 2179–2217, 2020.

[25] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual task
of code summarization,” in Proc. Annu. Conf. Neural Inf. Process. Syst.,
2019, pp. 6559–6569.

[26] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “A transformer-
based approach for source code summarization,” in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 4998–5007.

[27] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred API knowledge,” in Proc. 27th Int. Joint Conf. Artif.
Intell., 2018, pp. 2269–2275.

[28] R. Aharoni and Y. Goldberg, “Towards string-to-tree neural machine
translation,” in Proc. 55th Annu. Meeting Assoc. Comput. Linguistics,
2017, pp. 132–140.

[29] K. Nishida et al., “Multi-style generative reading comprehension,” in Proc.
57th Annu. Meeting Assoc. Comput. Linguistics, Jul. 2019, pp. 2273–2284.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[32] V. R. Prybutok, “An introduction to statistical methods and data analysis,”
Technometrics, vol. 31, no. 3, pp. 389–390, 2012.

[33] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal ques-
tions,” Psychol. Bull., vol. 114, no. 3, pp. 494–509, 1993.

[34] R. Singh and N. S. Mangat, Elements of Survey Sampling, vol. 15. New
York, NY, USA: Springer, 2013.

[35] Z. Gao, X. Xia, J. C. Grundy, D. Lo, and Y. Li, “Generating question titles
for stack overflow from mined code snippets,” ACM Trans. Softw. Eng.
Methodol., vol. 29, no. 4, pp. 1–37, 2020.

[36] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of automated
text summarization techniques for summarizing source code,” in Proc. 17th
Work. Conf. Reverse Eng., 2010, pp. 35–44.

[37] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program comprehension
with source code summarization,” in Proc. ACM/IEEE 32nd Int. Conf.
Softw. Eng., 2010, pp. 223–226.

[38] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-tracking
study of java programmers and application to source code summarization,”
IEEE Trans. Softw. Eng., vol. 41, no. 11, pp. 1038–1054, Nov. 2015.

[39] P. W. Mcburney and C. Mcmillan, “Automatic source code summarization
of context for java methods,” IEEE Trans. Softw. Eng., vol. 42, no. 2,
pp. 103–119, Feb. 2016.

[40] E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of NL-queries for software maintenance and reuse,”
in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 232–242.

[41] B. Wei, “Retrieve and refine: Exemplar-based neural comment gener-
ation,” in Proc. 34th IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019,
pp. 1250–1252.

[42] R. Cai, Z. Liang, B. Xu, Z. Li, Y. Hao, and Y. Chen, “TAG: Type auxiliary
guiding for code comment generation,” in Proc. 58th Annu. Meeting Assoc.
Comput. Linguistics, 2020, pp. 291–301.

[43] K. A. Dawood, K. Y. Sharif, and K. T. Wei, “Source code analysis extractive
approach to generate textual summary,” J. Theor. Appl. Inf. Technol.,
vol. 95, no. 21, pp. 5765–5777, 2017.

[44] X. Wang, L. L. Pollock, and K. Vijay-Shanker, “Automatically gen-
erating natural language descriptions for object-related statement se-
quences,” in Proc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng., 2017,
pp. 205–216.

[45] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code sum-
marization via a graph neural network,” in Proc. 28th Int. Conf. Prog.
Comprehension, 2020, pp. 184–195.

[46] W. Wang et al., “Reinforcement-learning-guided source code summariza-
tion via hierarchical attention,” IEEE Trans. Softw. Eng., vol. 48, no. 1,
pp. 102–119, Jan. 2022.

[47] L. Büch and A. Andrzejak, “Learning-based recursive aggregation of
abstract syntax trees for code clone detection,” in Proc. 26th IEEE Int.
Conf. Softw. Anal. Evol. Reeng., 2019, pp. 95–104.

[48] J. Svajlenko and C. K. Roy, “Fast, scalable and user-guided clone detec-
tion,” in Proc. 40th Int. Conf. Softw. Eng. Companion, 2018, pp. 352–353.

[49] H. Liu, Z. Yang, Y. Jiang, W. Zhao, and J. Sun, “Enabling clone detection
for Ethereum via smart contract birthmarks,” in Proc. 27th Int. Conf. Prog.
Comprehension, 2019, pp. 105–115.

[50] Z. Sun, Q. Zhu, Y. Xiong, Y. Sun, L. Mou, and L. Zhang, “TreeGen: A
tree-based transformer architecture for code generation,” in Proc. 34th
AAAI Conf. Artif. Intell. 2020, pp. 8984–8991.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

[51] C. Zhang, X. Niu, and B. Yu, “A method of automatic code generation
based on AADL model,” in Proc. 2nd Int. Conf. Comput. Sci. Artif. Intell.,
2018, pp. 180–184.

[52] N. C. Shrikanth and T. Menzies, “Assessing practitioner beliefs about
software defect prediction,” in Proc. 42nd Int. Conf. Softw. Eng.: Softw.
Eng. Pract., 2020, pp. 182–190.

[53] L. Gong, S. Jiang, R. Wang, and L. Jiang, “Empirical evaluation of the
impact of class overlap on software defect prediction,” in Proc. 34th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019, pp. 698–709.

[54] Z. Wang and L. Lu, “A semantic convolutional auto-encoder model for
software defect prediction,” in Proc. 32nd Int. Conf. Softw. Eng. Knowl.
Eng., 2020, pp. 323–328.

[55] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. T. Devanbu, “On the
naturalness of software,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp. 837–847.

[56] M. Allamanis, E. T. Barr, C. Bird, and C. A. Sutton, “Learning natural
coding conventions,” in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 281–293.

[57] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1287–1293.

[58] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proc. 55th Annu. Meeting Assoc. Comput. Linguistics,
2017, pp. 440–450.

Zheng Li received the B.Sc. degree in the computer
science and technology from the Beijing University of
Chemical Technology, Beijing, China in 1996, and the
Ph.D. degree in computer science from the CREST
Centre, King’s College London, London, U.K., in
2009.

He is currently a Professor with the College of
Information Science and Technology, Beijing Uni-
versity of Chemical Technology. He was a Research
Associate with King’s College London and Univer-
sity College London, London. He has authored or

coauthored more than 60 papers in referred journals or conferences, such as IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, International Conference on Soft-
ware Engineering, Journal of Software: Evolution and Process, Information
and Software Technology, Journal of Systems and Software, International Con-
ference on Software Maintenance, IEEE International Conference on Software
Maintenance and Evolution, International Computer Software and Applications
Conference, IEEE International Working Conference on Source Code Analysis
and Manipulation, and IEEE International Conference on Software Quality,
Reliability and Security. His research interests include software engineering,
in particular program testing, source code analysis, and manipulation.

Yonghao Wu received the B.S. degree in computer
science and technology from Nanchang Hangkong
University, Nanchang, China, in 2017, and the M.S.
degree in the computer science and technology in
2020 from the Beijing University of Chemical Tech-
nology, Beijing, China, where he is currently working
toward the Ph.D. degree.

His research interests include fault localization and
software testing.

Bin Peng received the B.S. degree in computer sci-
ence and technology from the Southwest Univer-
sity of Nationalities, Chengdu, China, in 2018. He
is currently working toward the master’s degree in
computer science and technology with the Beijing
University of Chemical Technology, Beijing, China.

His research interests include source code analysis
and software testing.

Xiang Chen (Member, IEEE) received the B.Sc.
degree in information management and system from
the School of Management, Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2002, and the M.Sc. and Ph.D.
degrees in computer software and theory from Nan-
jing University, Nanjing, China, in 2008 and 2011,
respectively.

He is currently an Associate Professor with the
Department of Information Science and Technology,
Nantong University, Nantong, China. He has authored
or coauthored more than 60 papers in referred journals

or conferences, such as IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
Information and Software Technology, Journal of Systems and Software, IEEE
TRANSACTIONS ON RELIABILITY, Journal of Software: Evolution and Pro-
cess, Software Quality Journal, Journal of Computer Science and Technology,
International Conference on Software Engineering, IEEE/ACM International
Conference Automated Software Engineering, IEEE International Conference
on Software Maintenance and Evolution, IEEE International Conference on
Software Analysis, Evolution and Reengineering, and International Computer
Software and Applications Conference. His research interests include software
engineering, in particular software maintenance and software testing, such as
software defect prediction, combinatorial testing, regression testing, and fault
localization.

Dr. Chen is a Senior Member of the China Computer Federation and a member
of the Association for Computing Machinery.

Zeyu Sun received the B.S. degree in computer sci-
ence and technology from the Beijing University of
Chemical Technology, Beijing, China, in 2017. He
is currently working toward the Ph.D. degree with
the School of Electronics Engineering and Computer
Science, Peking University, Beijing.

His current research interests include code gener-
ation, software testing, and deep learning testing.

Yong Liu (Member, IEEE) received the B.Sc. and
M.Sc. degrees in computer science and technology
and the Ph.D. degree in control science and engi-
neering from the Beijing University of Chemical
Technology, Beijing, China, in 2008, 2011, and 2018,
respectively.

He is currently an Assistant Professor with the Col-
lege of Information Science and Technology, Beijing
University of Chemical Technology. He has authored
or coauthored more than ten papers in referred jour-
nals or conferences, such as Journal of Systems and

Software, Information Sciences, IEEE International Conference on Software
Quality, Reliability and Security, International Conference on Software Anal-
ysis, Testing and Evolution (SATE), and International Computer Software and
Applications Conference. His research interests include software engineering, in
particular software debugging and software testing, such as source code analysis,
mutation testing, and fault localization.

Dr. Liu is a member of the China Computer Federation and the Association
for Computing Machinery.

Doyle Paul received the Ph.D. degree in astronomical
distributed data processing from the Dublin Institute
of Technology, Dublin, Ireland, in 2015.

He is currently the Head of the School of Computer
Science, Technological University Dublin, Dublin.
He has spent more than 20 years in industry in Silicon
Valley, CA, USA and Dublin. He was a Product and
Quality Director of CR2, a banking software com-
pany, Dublin; a Senior Manager with Sun Microsys-
tems, Menlo Park, CA; and a Senior Developer with
a BlueStar Financial Investment. His research areas

include big data processing of astronomical images, distributed systems, systems
infrastructure, and educational pedagogy.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:38:21 UTC from IEEE Xplore. Restrictions apply.

