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Abstract—First-order mutants (FOMs) have been widely used
in mutation-based fault localization (MBFL) approaches and have
achieved promising results in single-fault localization scenarios
(SFL-scenario). Higher-order mutants (HOMs) are proposed to
simulate complex faults and can be applied in MBFL theoretically
for multiple-fault localization scenarios (MFL-scenario). However,
whether HOMs can improve MBFL’s performance is not inves-
tigated and the effectiveness is not thoroughly evaluated. In this
empirical study, we investigate the impact of HOMs on the per-
formance of MBFL in SFL-scenario and MFL-scenario. The ex-
periments on two real-world benchmarks reveal that 1) 2-HOMs
can help improve the MBFL performance in SFL-scenarios; 2)
in MFL-scenarios, both 2-HOMs and 3-HOMs can achieve better
performance than FOMs; and 3) huge computational cost cannot
be ignored in the practice of HOMs. Therefore, effective methods
to reduce the number of HOMs for future MBFL studies should be
considered.

Index Terms—Empirical study, first-order mutants (FOMs),
higher-order mutants (HOMs), mutation testing, mutation-based
fault localization (MBFL).

I. INTRODUCTION

FAULT localization is the process of identifying faulty pro-
gram elements (such as statements, functions) that result

in failures during program execution [1]. Within the process of
software debugging, fault localization is one of the most expen-
sive activities, especially for large-scale and complex software
projects in the last decades [2]. To alleviate the cost of human
effort in localizing the root cause of faults, automated fault local-
ization methods [3], [4] have been proposed, such as information
retrieval (IR)-based techniques [5], [6], machine learning-based
techniques [7]–[9], spectrum-based techniques [10], [11], and
mutation-based techniques [12], [13]. IR-based techniques treat
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the bug report as a query and consider source code elements as a
document collection [14]. This kind of technique ranks elements
according to their textual similarity with the report. Although IR-
based techniques are as effective as spectrum-based techniques
in previous study [5], there are several differences between these
two techniques [15]. One difference is that IR-based techniques
are working on bug reports, while spectrum-based techniques are
working on programs. Another difference is that most IR-based
techniques locate faults at the file level and spectrum-based
techniques locate faults at the statement level.

Spectrum-based fault localization (SBFL) [3], [10], [16] is
one of the most commonly studied techniques. SBFL considers
the binary coverage of the program elements but with inherently
limited fault localization accuracy. Recent studies have shown
that mutation-based fault localization (MBFL) techniques can
help improve the performance of fault localization [17] and
achieve a higher fault localization accuracy than the state-of-
the-art SBFL techniques [18], [19].

In MBFL, for a program p, a set of faulty programs p′ (i.e.,
mutants) are generated by applying small-scale changes to the
original program p. The rules of small-scale changes that gen-
erate mutants from the original program are known as mutation
operators [20]. The mutants are usually classified into two types,
first-order mutants (FOMs) and higher-order mutants (HOMs).
In particular, FOMs are generated by applying mutation opera-
tors only once, while HOMs are generated by applying mutation
operators more than once [21]. It has been presented that HOMs
are more like real faults than FOMs [22]. Both FOMs and HOMs
were adopted to detect faults within programs [23], [24], but only
the FOMs were studied for localizing single program fault [12],
[13].

HOMs are more like real multiple faults, but they also have to
face the challenges of the huge number of mutants, which tends
to grow at an exponential rate of the number of orders [21].
Meanwhile, there exists the issue of equivalent and redundant
mutants in HOMs [25] and a lack of clear theory where mutants
are valuable [26]. The studies of HOMs mainly focus on mea-
suring the test suite’s quality [27], [28] and reducing the cost of
mutation testing [29], [30].

Theoretically, HOMs can be applied in MBFL for localizing
multiple faults, since the empirical studies [31], [32] indicate
that the failures are often triggered by multiple faults. How-
ever, Digiuseppe and Jones [33] found that multiple faults have
a negligible effect on the effectiveness of the fault localiza-
tion. Moreover, Xue and Namin [34] presented that localizing
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multiple faults have been illustrated to be more difficult, time-
consuming, and costly due to the issue of fault interference (i.e.,
an interaction that multiple faults manifest themselves to cause,
or mask, test case failure [35]–[37]), which leads to performance
degradation of the existing fault localization techniques. Fur-
thermore, existing studies have not analyzed the relationship
between HOMs and multiple faults, while the impact of using
HOMs on MBFL is still unknown.

In this article, we aim to investigate the performance of using
FOMs and HOMs on single-fault localization and the perfor-
mance of using FOMs and HOMs on multiple-fault localization.
A theoretical analysis of MBFL with FOMs and HOMs is first
conducted for both SFL-scenario and MFL-scenario. Then a
large-scale empirical study is conducted to investigate whether
using HOMs can improve the performance of MBFL.

In the experimental setup, the programs from SIR [38] and
Codeflaws [39] are selected as our empirical subjects. Then the
mutation operators introduced by Agrawal et al. [40] are used to
generate FOMs and construct HOMs. Specifically, in the SFL-
scenario, we conduct the experiments on 66 versions of six real-
world programs from SIR and 1284 real single-fault programs
from Codeflaws. In the MFL-scenario, for SIR, we obtain 120
versions of multiple-fault programs by seeding faults to single-
fault programs and 124 multiple-fault programs for Codeflaws.

The experimental results show that, in the SFL-scenario,
2-HOMs can help fault localization. In the MFL-scenario, com-
bining 2-HOMs and 3-HOMs can localize more faults in terms
of Top-N and MAP metrics on both benchmarks. We also
investigate the performance of different MBFL formulas, and
Ochiai [41] can localize faults more precisely in terms of all
metrics. Moreover, the high computational cost of using HOMs
still exists to such an extent that researchers should consider
methods to reduce the cost of using HOMs on fault localization.

The contributions of this study are summarized as follows:
1) The influence of higher-order mutant on MBFL is first

investigated and the results show that the higher-order
mutant can help for improving the effectiveness of fault
localization.

2) We conduct a theoretical analysis of MBFL with FOMs
and HOMs when applied in an SFL-scenario and an MFL-
scenario. Besides, we have provided a specific example to
illustrate how HOMs work in the MBFL process.

3) We demonstrate the impact of HOMs on the performance
of MBFL in the SFL-scenario and the MFL-scenario
through a large-scale empirical study on two real-world
benchmarks, SIR and Codeflaws.

4) To facilitate other researchers in replicating this study, we
share both the subjects and scripts1. The detailed results
of our empirical study are publicly available2.

The rest of this aticle is organized as follows. Section II
presents the background and related work. Section III intro-
duces the theoretical analysis for MBFL and the motivation.
Section IV describes the design of the empirical study, while
Section V presents the results with respect to research questions.

1[Online]. Available: https://github.com/paper-results/code
2[Online]. Available: https://github.com/paper-results/data

TABLE I
THREE POPULAR SUSPICIOUSNESS FORMULAS FOR MBFL

Section VII discusses threats to the validity of the empirical
study. Finally, Section VIII concludes this article.

II. BACKGROUND AND RELATED WORK

A. Mutation-Based Fault Localization

MBFL is a well-studied technique that is based on mutation
analysis [19]. Mutation analysis works by making simple syntac-
tic changes to the program under test and then generating many
different versions of it. Each program contains artificial faults
and these versions are called mutants [42]. The transformation
rules that define how to introduce syntactic changes to the
program are called mutant operators [20]. In this study, we adopt
mutation operators for the C programming language introduced
by Agrawal et al. [40] (see Table IV).

In mutation analysis, mutants are used to evaluate the quality
of test cases based on their ability to distinguish the mutants’
behavior from that of the original program [43]. If a test case
can distinguish the behavior of a mutant from the original, we
say that the mutant has been killed or detected. Otherwise, the
mutant is notkilled or live [26].

The classical MBFL approach typically includes four steps.
Step 1: Obtain statements covered by failed test cases. Ini-

tially, the MBFL approach executes a program P by a test suite
T . Next, the coverage information and test results (i.e., pass or
fail) are collected. Then, T is divided into two groups: Tp and
Tf , where Tp is the set of passed test cases and Tf is the set of
failed test cases. Here, all statements covered by Tf are denoted
as Covf .

Step 2: Generate and execute mutants. The MBFL approach
employs mutation operators to artificially inject faults into state-
ments from Covf to generate mutants. Note that a statement s
may have a set of mutants, denoted by M(s). After executing
a mutant m by T , T is split into two sets: Tn(m) and Tk(m),
where Tn(m) is the set of test cases that cannot kill the mutant
m and Tk(m) is the set of test cases that can kill the mutant m.

Step 3: Compute the suspiciousness. The suspiciousness of
the mutant m can be calculated by different MBFL formulas,
which are based on the following four parameters: anp(m) =
|Tn(m) ∩ Tp|, akp(m) = |Tk(m) ∩ Tp|, anf (m) = |Tn(m) ∩
Tf |, and akf (m) = |Tk(m) ∩ Tf |, where, anp(m) is the number
of passed test cases which cannot kill m, akp(m) is the number
of passed test cases which can kill m, anf (m) is the number of
failed test cases which cannot kill m, and akf (m) is the number
of failed test cases which can kill m.

Table I lists three popular MBFL formulas which were used
in this article, i.e., Dstar∗ [44] (∗ is set to 3 in this article),
Jaccard [45], Ochiai [41].
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Next, the suspiciousness of the statement s is assigned the
maximum suspiciousness value of the mutants generated by
s: sus(s) = max{sus(m1), sus(m2), . . . , sus(mq)}, where
m1, . . . ,mq are mutants in M(s) and the sus(s) is the sus-
piciousness of the statement s.

Step 4: Generate fault localization report. The MBFL ap-
proach sorts all statements in descending order based on their
suspiciousness value and returns this ranking list. The developers
will use this ranking list to localize the faults in the program and
then fix them.

MBFL works based on the assumption that mutants killed
mostly by failed test cases have a connection with the pro-
gram faults. Recent studies [12], [19] also demonstrated that
MBFL could significantly outperform other types of fault lo-
calization techniques (such as spectrum-based fault localization
techniques [18], [19]).

B. Higher-Order Mutation Testing

Higher-order mutation testing was first introduced by Jia and
Harman [21]. According to their study, mutants can be classified
into two types: FOMs and HOMs. Both of these types of mutants
were first proposed by Offutt, and were named as simple mutants
and complex mutants in their study.

Definition 1 (FOM): An FOM of a program p is constructed
by making a single syntactic change to p. The rule of producing
FOM is called first-order mutation operators FOP .

Definition 2 (HOM): An HOM of a program p is created from
p by applying k operators from FOP . This HOM is said to be
a kth order mutant of p, recorded as k-HOM.

Note that in this study, thek operators are applied ink different
statements, which follows the same idea of “Programs with
multiple faults on multiple lines” mentioned in the study of
Debroy and Wong [37].

In higher-order mutation testing, HOMs were mainly used
to evaluate the quality of test suites [47], and to reduce testing
costs [30], [48], [49]. Some researchers use HOMs in test data
generation [50] and coupling effect analysis [42], [51]. Also,
HOMs can be adopted to alleviate the equivalent mutant prob-
lem [52] and estimate mutation coverage of FOMs for reducing
the cost on first-order mutation testing [53].

Different from previous HOMs studies, in this study, we adopt
HOMs to the field of fault localization, which utilizes HOMs to
localize faults in the programs. We conduct an empirical study
in this article to determine whether HOMs can help improve the
fault localization effectiveness.

III. RESEARCH MOTIVATION

In traditional MBFL techniques, most of the studies are based
on the single fault hypothesis [12], [13], [17], [54], [55]. How-
ever, the empirical studies [31], [32], [56] implied that individual
failures are often triggered by multiple faults spread throughout
the system. In this study, we try to locate multiple faults using
HOMs.

In this section, in order to better illustrate that why HOMs
can help in multiple-fault localization, we first provide the basic
notations and definitions of the theoretical analysis for MBFL.

Then, we present two hypotheses based on these definitions.
Finally, we use an example program to demonstrate our hypoth-
esis.

A. Theoretical Analysis for MBFL

To formally represent the notion of the difference between
FOMs and HOMs applied in fault localization, we followed the
framework proposed by Shin and Bae [2], [57].

In this framework [2], for a correct program ps, a single-
fault program is pi ∈ P (i is the faulty line number), a two-fault
program ispx,y ∈ P (x, y are the faulty line number), and mutant
m is generated from pi or px,y . If a test suite T detects a fault in
program pi, it can be represented by

d (T, pi, ps) �= 0 (1)

where 0 is the zero vector and d is a vector that is a composite
of n elements, i.e.,

d (T, pi, ps) = 〈d (t1, pi, ps) , . . . , d (tn, pi, ps)〉 .
Equation (1) implies that if there exists at least one test t ∈ T

which detects different behavior in pi and ps, it says that test
suite T has detected the fault in program pi. In other words, we
can say t fails on pi.

Similarly, a test suite T which kills a mutant m generated
from pi can be represented by

d (T, pi,m) �= 0. (2)

This implies that there is at least one test where t’s behaviors
on pi are different from the behaviors on m.

When mutants are adopted in the traditional MBFL process,
it calculates suspiciousness of mutants using the detect informa-
tion represented in (1) and killing information represented in (2).
Moreover, MUSE [17] has considered the test behaviors of the
mutant m and the correct program ps, which can be represented
by

d (t,m, ps) = 0. (3)

Based on (3), the test t has the same behaviors on m and ps.
In other words, mutant m has fixed the fault program pi on test
t, changing pi to ps.

Furthermore, if the mutantm has fixed pi against the test suite
T , it can be represented by

d (T,m, ps) = 0. (4)

This idea is matched to the study of Shin and Bae [2]. They
have presented two foundations of MBFL: 1) considering a
mutant as a potential fix, noted as MBFL-FIX, and 2) considering
a mutant as a fault, noted as MBFL-FLT. The first assumption
has been proven to be useful in increasing the suspiciousness of
mutants in previous works [2] and the second one is insufficient
for calculating the suspiciousness of mutants when the conduct
of faulty program is not clearly defined. Hence, we focus on
extending the first assumption on single fault and multiple fault
localization.
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Fig. 1. Foundations of MBFL-fix. (a) SFL-scenario. (b) MFL-scenario.

Definition 3 (MBFL-Fix score): An MBFL-fix score Fix−
score is a score, such that

Fix-score (T, ps,m)) =
||d (T, ps,m) ||2

n

=
|| 〈d (t1, ps,m) , . . . , d (tn, ps,m)〉 ||2

n

for all T = {t1, . . . , tn} ⊆ Tn, ps ∈ P,m ∈ M, and || · || is the
Euclidean norm of the vector.

In other words, a mutant m returns a Fix-score on ps from
n tests. A lower Fix-score indicates m is more similar to the
correct program ps.

Next, we propose two hypotheses with FOM and HOM ap-
plied in single-fault and multiple-fault localization.

Hypothesis 1: Within the SFL-scenario, FOMs are more sim-
ilar to the correct program, introduce to better fault localization
effectiveness on single-fault programs.

This assumption considers that FOMs have fewer differences
from the correct program ps than HOMs, on single fault program
pi, such that

Fix-score (T, ps, HOM)) ≥ Fix-score (T, ps, FOM))

≥ Fix-score (T, ps, ps)) = 0.

Hypothesis 2: Within the MFL-scenario, HOMs are more
similar to the correct program, result in better fault localization
effectiveness on multiple-fault programs.

This assumption considers that HOMs have fewer differences
from the correct program ps than FOMs on multiple fault pro-
gram px,y , such that

Fix-score (T, ps, FOM)) ≥ Fix-score (T, ps, HOM))

≥ Fix-score (T, ps, ps)) = 0.

The foundations of the two hypotheses are depicted in Fig. 1.
Each of the cube represents a program space that contains four
major points corresponding to the correct program ps, faulty pro-
grams pi (single-fault), px,y (multiple-fault), FOM, and HOM.
The distance between two points represents the similarity of the
two programs. Fig. 1(a) shows the foundation of Hypothesis 1
and Fig. 1(b) shows the foundation of Hypothesis 2.

The study of Shin and Bae [2] implied that MBFL-fix is
fundamentally the same as program repair, in which the objective
is to move towards ps from pi or px,y using FOM or HOM. In
the SFL-scenario, FOM is closer to ps with only one change
from pi and HOM with several changes is further away from ps.

In the MFL-scenario, since px,y contains two faults that have
a distance from ps, FOM is further away from ps and HOM
has a higher probability to fix px,y , which brings it closer to ps.
These two hypotheses match our intuition that simple faults can
be fixed by simple mutants (FOMs) and complex faults can be
fixed by complex mutants (HOMs). In the study of Debory and
Wong [37], they found that the reason their proposed strategy
cannot fix multiple faults in the same program is because they
only considered FOMs. In other words, there is potential for
locating or fixing multiple faults in a program by making use of
HOMs. We next present an example to describe how FOMs and
HOMs work on MBFL.

B. Motivating Example

In traditional mutation-based fault localization, there is a
one-to-many relationship between each statement of program
under test and the corresponding generated FOMs. The suspi-
ciousness of one statement s is assigned with the maximum
suspiciousness value of the FOMs generated by s. However,
when HOMs are applied in fault localization, there will be a
many-to-many relationship between statements and HOMs. In
this article, we consider each k-HOM as composed of k FOMs,
and each FOM is related to one statement s. Then we can
determine the suspiciousness of the statement s by calculating
the mean suspiciousness of related HOMs

SusHOMs(s) =

∑n
i=1 Sus(HOMi)

n
(5)

where n is the number of related HOMs of statement s.
The use of the mean value as the statement suspiciousness is

based on the hypothesis: The HOMs related to one statement
have similar suspiciousness, and the error in the suspiciousness
of one statement can be reduced by calculating the average
value. We did not use the traditional method of calculating
the maximum value because the maximum value calculation
method is prone to the following situation: if an HOM has a
high suspiciousness, then the statements associated with it also
have a high suspiciousness, and then these statements are ranked
high in the list. However, the probability that these statements
are faulty is very low. Suppose a program has 50 lines which
contain two faults, and each line of statements has one FOM,
then the probability that two statements related to one 2-HOM
are both faulty is: 1

C(50,2) =
1

1225 .
Table II illustrates the detailed process of adopting FOMs and

HOMs to MBFL. In Table II, a program P called mid() takes
three integers as input parameters and returns the middle value
of them. The test suite T is composed of six test cases, and
the program P contains 14 program statements where statement
s4 and statement s11 are both faulty statements. A statement
execution labeled with “1” means that the mutant (FOM or
HOM) can be killed by the test case, and is empty otherwise. Test
cases (t2, t3, t5) are failed test cases, while test cases (t1, t4, t6)
are passed test cases. In this example, the suspiciousness of each
mutant is computed by using the Ochiai formula in Table II with
two given results, one result is for FOMs and the other result is
for HOMs.
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TABLE II
MOTIVATING EXAMPLE OF OUR STUDY

The bold entities to highlight the faulty statements followed by corrected versions (s4 and s11).

For fault localization using FOMs, we assume that MBFL
generates only two FOMs per statement covered by the failed
test cases, resulting in a total of 14 FOMs (listed under column
“FOMs”). For MBFL, it first utilizes the killing information
of test cases (from t1 to t6) to calculate suspiciousness of
FOMs (listed under column “FOM sus”). Next, the maximum
suspiciousness of mutants generated from the same statement is
assigned to the statement suspiciousness (listed under column
“Stmt. Sus”). Finally, in the column “Rank,” MBFL ranks the
faulty statements s4 and s11 jointly in the third place.

For fault localization using HOMs, we first construct HOMs
from only two different FOMs for three categories, resulting
in a total of 14 HOMs (listed under column “HOMs”). Then,
the suspiciousness of HOMs is computed in the column “HOM
sus”. Next, to guarantee fairness, we obtain the statement sus-
piciousness by calculating the mean of corresponding HOMs
suspiciousness. More specifically, using statement s1 as an
example, the corresponding HOMs of s1 are three HOMs (i.e.,
HOM1, HOM2, and HOM3) and the suspiciousness are 0.41,
1.00, and 1.00 respectively. Therefore, the suspiciousness of

s1 is: Sus(s1) = 1.00+0.41+1.00
3 = 0.80. Finally, the statement

suspiciousness using HOMs is listed in the column “Stmt. Sus”
and it ranks the faulty statements s11 and s4 in the first place
and third place, respectively.

C. Motivation

As analyzed in Section III-A, we consider that HOMs are
more similar to the correct program, which results in better fault
localization effectiveness on multiple-fault programs. Further
motivating example indicates that FOMs rank the faulty state-
ments in the top 5, while HOMs ranks the faulty statements in the
top 3, which shows that HOMs have a better fault localization
accuracy in the example. This result matches the Hypothesis
2 that motivates our study in this article. In recent years, the
most of the MBFL techniques are based on the single fault
hypothesis [12], [13], [17], [54], [55], empirical studies [31],
[32], [56] have implied that individual failures are often triggered
by multiple bugs spread throughout the system. Thus, in this
study, to our best knowledge, we are the first to investigate the
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Fig. 2. Overview of experimental design.

TABLE III
STATISTICS OF SUBJECT PROGRAMS

impact of FOMs and HOMs on the performance of MBFL in
both the MFL-scenario and the SFL-scenario.

IV. EMPIRICAL STUDY

In this section, we present the experimental subjects and
design proposed to address our research questions. Fig. 2 shows
an overview of the experimental design and followed by the
details of each part of the design.

A. Subject Programs

We conducted the experimental studies on two benchmarks of
software-artifact infrastructure repository (SIR) [38] and Code-
flaws [39].

1) SIR3 is a collection of artificially injected faults of real-
world open-source programs, which have been widely
used by previous studies on fault localization [3], [13],
[54], [58]. SIR also provides adequate test cases to mea-
sure the fitness of HOMs more precisely [21]. We include
six subject programs from SIR. The first five programs are
relatively small-scale programs with hundreds of lines of
code from Siemens Suite, while the last program (sed) is
a large-scale real-world program.

2) Codeflaws [39] is a large benchmark of real faults on C
programs which are diverse and relatively hard to ex-
pose [24], [59]. Codeflaws consists of 3902 real fault
programs in 7436 programs selected from the Codeforces4

online database. Each fault in this benchmark has a unique
rejected “faulty” submission and the accepted “corrected”
submission. It is noted that every faulty program in the
benchmark is unique, meaning that every program is dif-
ferent from the others. We excluded the programs where
the failures cannot be detected and contain runtime errors.
Overall, we considered 1408 different programs out of
3902.

TABLE IV
TYPICAL MUTATION OPERATORS FOR MBFL

Table III presents statistics for all subject programs, including
the program name, the total number of versions, used versions,
average lines of code, the number of test cases, and the number
of FOMs and HOMs used in the study.

In the experiments, 66 versions from SIR and 1408 versions
from Codeflaws are selected, while some versions are excluded
because of the following: 1) the related test suite of some
versions cannot detect failures on the faulty versions; and 2) the
failures of some versions lead to runtime errors, and it is hard to
collect full coverage information for these faulty versions.

B. Generate Mutants

FOMs and HOMs are first generated for the empirical study. In
this phase, we collect statements covered by the failed test cases
and insert faults by using mutation operators to these statements.
We adopt 15 types of C mutation operators (see the Table IV)

3[Online]. Available: https://sir.csc.ncsu.edu/
4[Online]. Available: https://codeforces.com/

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:35:29 UTC from IEEE Xplore.  Restrictions apply. 

https://sir.csc.ncsu.edu/
https://codeforces.com/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: CAN HIGHER-ORDER MUTANTS IMPROVE THE PERFORMANCE OF MUTATION-BASED FAULT LOCALIZATION? 7

proposed by Agrawal et al. [40], for a total of 199 mutation
operators, and Proteum [60] is used to generate mutants.

The FOMs are generated using Metallaxis-FL [12] in the
study since previous empirical studies [61], [62] have shown
that Metallaxis-FL could outperform MUSE [17] on the effec-
tiveness and efficiency of fault localization. The HOMs from
the second order to fifth order are generated based on FOMs.
Considering the huge computation cost of MBFL, we only
generate the same number of HOMs on each order as FOMs. In
the experiments, we first randomly choose k statements covered
by the failed tests as the mutation statements. Then, FOM is
generated for each statement in k, and the total k FOMs forms a
k-HOM. In summary, we generate 686 729 FOMs and 1 161 299
HOMs in total for all of the programs, and the number of FOMs
and each order of HOMs are presented in Table III.

It is important to note that we did not consider higher orders
(e.g., 6-HOMs, 7-HOMs, etc.) because: 1) the survey of Silva
et al. [63] observes that 71% of the studies use 2-HOMs, 33%
of studies consider 3-HOMs, and 27% of studies consider 4-
HOMs; 2) Wong et al. [64] found that the HOMs of up to the
fourth order are more effective for mutation testing; 3) Nguyen et
al. [28] found that the fifth order can be a relevant highest order
in higher-order mutation testing, which indicates that HOMs
from the second order to fifth order are sufficient for finding
high-quality and reasonable HOMs in mutation testing.

C. Simulate Fault Localization Scenarios

To simulate the SFL-scenario and the MFL-scenario in the
experiments, we use the original single fault programs from SIR
and Codeflaws as our SFL-scenario. Then, the multiple-fault
programs of SIR are generated by a random combination of
single fault versions for each subject. The number of faults in
each program in the MFL-scenario ranges from 2 to 5. Later we
generate 120 versions of multiple faults programs for SIR and
124 multifault versions from Codeflaws.

It is noted that we determine the fault locations of SIR using
the fault seeding location [33], [36], [65], [66]. For Codeflaws,
we compare the rejected “faulty” submission and the accepted
“corrected” submission to determine the locations. However,
some “corrected” submissions in Codeflaws inserted new code
rather than modifying the existing code. This kind of fault is
regarded as the omission fault [62], [67]. To address this issue,
we follow the methodology proposed by Pearson et al. [62].
Specifically, we identify the statements in the “faulty” sub-
mission that need to be inserted as the locations of fault. A
fault localization technique communicates with the programmer
using statements of source code [62] and a more useful technique
can rank the statements needed to insert in a higher place of the
ranking list.

Finally, we run the mutants generated from these single-fault
and multiple fault programs to collect the testing results for
performance evaluation.

D. Evaluation Metrics of MBFL

To evaluate the effectiveness of applying FOMs and HOMs
in MBFL, we utilize three performance metrics, i.e., EXAM ,

Top-N , and MAP , which have been widely used in previous
studies [4], [68]. Moreover, we use a mutant-test-pair metric to
evaluate the efficiency of MBFL.

1) EXAM [4]: is used to measure the percentage of program
elements that need to be inspected by developers until finding
the faulty element. EXAM is a commonly used metric for fault
localization techniques, and a lower EXAM value indicates a
better fault localization technique [4]. The formula of EXAM
is defined as follows:

EXAM =
rank

Number of executable statements
. (6)

The numerator in (6) is the ranking number of the faulty
statement, and the denominator is the total number of statements
that need to be checked. More specifically, rank is calculated
as

rank =
(i+ 1) + (i+ j)

2
. (7)

In (7), i is the number of nonfaulty statements whose suspi-
ciousness value is higher than the faulty statement, and j is the
number of statements that share the same suspiciousness value
with the faulty statement. To break the tie, we take the average
of the first (i+ 1) and last (i+ j) ranks to determine the rank of
the faulty statement.

2) Top-N: is used to measure how many faults can be located
within the top N program elements among all candidates [69].
In the survey of Kochhar et al. [70], 73.58 % of developers
only inspect Top-5 program elements and almost all developers
agree that Top-10 elements are the upper bound for inspection
within their acceptability level. Therefore, following the previ-
ous study [68], [69], we set N to 1, 3, 5 to make comparisons.
A fault localization technique with higher Top-N is better.

3) Mean Average Precision (MAP): evaluates ranking state-
ments in information retrieval [71]; it is the mean of the average
precision of all faults. AP (Average precision) can be calculated
as follows:

AP =
M∑

i=1

P (i)× pos(i)

number of faulty statements
. (8)

In (8), i is a rank of the statement, M is total number of
statements in the ranked list, and pos(i) is a Boolean function,
while pos(i) = 1 indicates the ith statement is faulty, otherwise
pos(i) = 0. P (i) is the precision of localization at each rank i

P (i) =
number of faulty statements in top i ranks

i
. (9)

MAP is the mean of AP (Average Precision) values com-
puted for a set of faults. We calculate MAP for faults belonging
to the same project. A higher MAP value demonstrates a better
technique.

4) Mutant-Test-Pair (MTP): measures the mutant execution
cost of MBFL and has been used in previous studies [54], [72],
[73]. An MTP counts the number of mutant executions on the
test cases. The idea of MTP is that the number of mutation
execution is linked to the computational cost required to obtain
the rank of statements [74]. Compared with the actual run-time
cost,MTP metric has the advantage of avoiding the influence of
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TABLE V
Top-N AND AVERAGE MAP OF MBFL USING FOMS AND HOMS IN THE SFL-SCENARIO WITH THREE FORMULAS

the run-time environment. A mutant set withmmutants executed
by a test suite with n test cases, MTP can be calculated by the
following formula:

MTP = m× n. (10)

A lower MTP value means the corresponding MBFL tech-
nique has better efficiency.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results to address
the proposed research questions.

A. Research Questions

RQ1: Can HOMs help in improving fault localization accuracy
in the SFL-scenario?

RQ2: Can HOMs help in improving fault localization accuracy
in the MFL-scenario?

RQ3: Which MBFL formula is better for MBFL techniques
when doing fault localization?

RQ4: What is the execution cost of HOMs when applied to fault
localization?

RQ1 and RQ2 review the performance of HOMs in SFL-
scenario and MFL-scenario. RQ3 compares the fault localization
effectiveness of different MBFL formulas. RQ4 measures the
cost of adopting HOMs.

B. Answer for RQ1 (Fault Localization Effectiveness on
SFL-Scenario)

To answer RQ1, we use Top-N (N is set to 1, 3, 5) and
MAP to evaluate the fault localization effectiveness of different
fault localization techniques (i.e., SBFL techniques and MBFL
techniques with FOMs and HOMs).

In terms of the metrics Top-1 , Top-3 , Top-5 , FOMs and
HOMs again outperform SBFL techniques on three formulas
(see Table V). For SIR, FOMs locate more faults than HOMs
(from the second order to fifth order) on Jaccard , Ochiai
formulas at Top-1 , Top-3 , Top-5 , while 2-HOMs on Dstar
formula have the best performance. For Codeflaws, 3-HOMs
on Jaccard and 2-HOMs on Ochiai performs better than other
techniques, which shows that in these two formulas, HOMs can
help improve fault localization effectiveness.

In terms of the metrics MAP , FOMs localize faults more
precisely than HOMs for SIR, and 2-HOMs localize faults more
precisely than FOMs for Codeflaws on Jaccard , Ochiai . In
these two benchmarks, MAP values for SBFL techniques do
not exceed 0.5, which is the worst outcome.

To further determine the statistical significance between
FOMs and HOMs, we collect the EXAM of all pro-
gram versions for different techniques and then employ the
wilcoxon signed-rank test [75] at a confidence level of 95%.
Table VI summarizes the testing results on EXAM of FOMs
with SBFL and different HOM orders. In Table VI, the p-value
(highlighted background) being less than 0.05 means there is
a statistical difference between FOMs and other techniques.
We can find that the EXAM of 2-HOMs have significant
differences with FOMs on Jaccard , Ochiai for SIR and Dstar ,
Ochiai for Codeflaws.

In traditional MBFL, a mutant (FOM) is regarded as a partial
fix or a similar version for faulty programs that can achieve better
performance in the SFL-scenario [2], which matches Hypothesis
1. FOMs have a higher probability of fixing the fault and are
more similar to the faulty programs than HOMs. When HOMs
are applied in the SFL-scenario, they will inject more faults
and increasing distance from the original one, which produces
HOMs that cannot help improve in seeded fault programs (SIR).
While a real single fault is more complex than the seeded fault,
FOMs have a lower probability to fix or similar to the faulty
version, but some HOMs (2-HOMs) mutates multiple lines that
can be more similar to the real single fault, which improves the
fault localization effectiveness.

Summary for RQ1: FOMs can localize more faults on SIR
and 2-HOMs can localize more faults on Codeflaws using the
metrics Top-N and MAP within the SFL-scenario. Further
statistical testing shows that there is significant difference
between FOMs and 2-HOMs. It suggests that 2-HOMs can
help improve the fault localization effectiveness on real-fault
programs in the SFL-scenario.

C. Answer for RQ2 (Fault Localization Effectiveness on
MFL-Scenario)

To answer RQ2, we adopt Top-N and MAP to evaluate the
fault localization effectiveness of SBFL techniques and MBFL
techniques.
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TABLE VI
P -value OF MBFL USING FOMS AND HOMS IN THE SFL-SCENARIO WITH THREE FORMULAS

TABLE VII
Top-N AND AVERAGE MAP OF MBFL USING FOMS AND HOMS IN THE MFL-SCENARIO WITH THREE FORMULAS

TABLE VIII
P -value OF MBFL USING FOMS AND HOMS IN THE MFL-SCENARIO WITH THREE FORMULAS

In terms of the metrics Top-1 , Top-3 , Top-5 , FOMs and
HOMs again outperform SBFL techniques on three formulas
(see Table VII). For SIR, 3-HOMs performs best on Dstar ,
Ochiai formulas, while 2-HOMs performs best on Jaccard
formula. For Codeflaws, FOMs can rank more faults at the top
and 3rd place with Dstar formula, while 3-HOMs can place
more faults in the top 1, 3, and 5 ranks than other techniques
at the metric of Top-1 , Top-3 , and Top-5 on the Jaccard and
Ochiai formula.

In terms of the metric MAP , for SIR, 3-HOMs again lo-
calizes faults more precisely than other techniques with Dstar ,
Ochiai formulas, while 2-HOMs performs better on theJaccard
formula. For Codeflaws, FOMs have a higher MAP on av-
erage with the Dstar formula, while using the Jaccard and
Ochiai formulas, 3-HOMs and 2-HOMs, respectively, perform
better.

Table VIII shows the result of wilcoxon signed-rank test
on the EXAM scores between FOMs and HOMs in the MFL-
scenario. We can find that, in most cases, the EXAM of FOMs
have significant differences when applying SBFL and HOMs
techniques (except the case of 2-HOMs, 3-HOMs, 4-HOMs on
Dstar and 5-HOMs on Jaccard for SIR and the case of 2- to
5-HOMs on Jaccard for Codeflaws). It is noted that there is
a statistical difference between FOMs and 2-HOMs, 3-HOMs

in the formulas of Jaccard and Ochiai . Also, the EXAM of
2-HOMs, 3-HOMs have significant differences on Dstar and
Ochiai for Codeflaws.

The results match Hypothesis 2 that HOMs are closer to the
correct program. FOM only changes one line that is hard to fix
multiple fault programs, while a k-HOM mutates k lines has a
higher probability of fixing the faults than FOMs. Also, HOMs
with higher orders (e.g., 4-HOMs and 5-HOMs) will introduce
more faults that are different from the original programs.

Summary for RQ2: Using 2-HOMs and 3-HOMs in MBFL
can localize more faults in terms of Top-N metric and
MAP on both benchmarks. Statistical testing indicates that
there is significant difference between FOMs, 2-HOMs and
3-HOMs. This finding suggests that 2-HOMs and 3-HOMs
can help improve the effectiveness of fault localization in
MFL-scenario than SFL-scenario.

D. Answer for RQ3 (Impacts of Different MBFL Formulas)

To answer RQ3, we useTop-N andMAP metrics to compare
the fault localization effectiveness of different formulas. For
the SFL-senario, in terms of the Top-N metric, the results in
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Fig. 3. MTP of MBFL using FOMs and HOMs in SFL-scenario. (a) SIR. (b)
Codeflaws.

Table V show that theOchiai formula can rank more faults at the
top rank on SIR and Codeflaws, with 41 and 825, respectively.
Furthermore, FOMs and 2-HOMs usingOchiai find more faults
at the Top-3 ranks on SIR and Codeflaws, with 54 and 1050,
respectively. The Jaccard formula can localize one more fault
than Ochiai on Codeflaws at the Top-5. In terms of the MAP
metric, using the Ochiai formula in MBFL techniques have a
higher average MAP value compared to the other two formu-
las in most cases (see the MAP column of Ochiai section).
However FOMs have the highest MAP when applied Dstar in
Codeflaws.

For the MFL-scenario, in Table VII, in terms of Top-N ,
MBFL techniques can place more faults at the Top-1, Top-3,
and Top-5 rank when using Ochiai as the MBFL formula (see
the column of Top-1 , Top-3 , and Top-5 in Section Ochiai ). In
terms of the MAP metric, MBFL techniques using the Ochiai
formula again outperform Dstar and Jaccard formulas in both
SIR and Codeflaws (see the MAP column of Ochiai section in
Table VII).

From the above analysis, in the MFL-scenario, using Ochiai
as the MBFL formula, can localize faults more precisely than
when using the Dstar and Jaccard formulas. This result is
consistent with previous work [13].

Summary for RQ3: In both SFL-scenario and MFL-
scenario, MBFL with Ochiai formula has better fault local-
ization performance than MBFL with theDstar and Jaccard
formulas.

E. Answer for RQ4 (Comparison of Mutation Execution Cost)

To address RQ4, we used the MTP metric to measure the
mutation execution cost of each MBFL technique. Figs. 3 and 4
show the cost of FOMs and HOMs in terms of MTP values in the
SFL-scenario and the MFL-scenario. The X-axis shows different
MBFL techniques and the Y-axis is the sum of all versions’
MTP values in one benchmark. From Fig. 3(a), FOMs have the
highest cost because of the huge amount of mutants executed.
Next, the 2-HOMs method presents 111.7 million MTPs of cost
in SIR. The cost of 3-HOMs, 4-HOMs, and 5-HOMs decreases
because the corresponding executed HOMs are decreasing while
the test suite has no change. Similar cases can be concluded from

Fig. 4. MTP of MBFL using FOMs and HOMs in MFL-scenario.

TABLE IX
NUMBER OF PROGRAMS IN DIFFERENT FAULT COMPLEXITY

Codeflaws and the MFL-scenario in Fig. 4. This indicates that
combining HOMs on fault localization still incurs a huge exe-
cution cost. This suggests researchers should propose methods
to reduce the number of HOMs.

Summary for RQ4: In both SFL-scenario and MFL-
scenario, the execution cost of using HOMs in MBFL is
lower than that of using FOMs. However we still have to
execute a large number of mutants on test cases. In future
work, researchers should pay attention to reducing the cost
of MBFL with HOMs.

VI. DISCUSSIONS

A. Fault Complexity and Mutant Order

Our study conducts an empirical study that applies HOMs on
fault localization. The results indicate that both in single-fault
localization scenarios and in multiple-fault localization scenar-
ios, HOMs (i.e., 2-HOMs and 3-HOMs) can help improve fault
localization effectiveness. In this section, we further investigate
the relationship between fault complexity (i.e., the number of
faults in the program) and mutant orders. Table IX lists the
fault complexity of the program used in our experiments and we
provide the additional results in the MFL-scenario (the results
of the SFL-scenario are shown in Section ??). However, in the
practical fault localization scenario, the complexity of faults is
unknown for programmers.

Table X reports the results on SIR and Codeflaws benchmarks
with different fault complexity. We use Top-N and MAP
to evaluate the results and Ochiai as the MBFL formula in
the table. From the results, we find that there is no strong
correlation between the complexity of faults and mutant order.
For SIR, 2-HOMs rank more faults at the top 5 than FOMs
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TABLE X
Top-N AND AVERAGE MAP OF MBFL USING DIFFERENT ORDERS OF HOMS WITH OCHIAI FORMULA

in Table X. Besides, 3-HOMs have a higher MAP value on
programs with 3 faults and 5 faults, while 4-HOMs and 5-HOMs
perform worse in all fault complexity. Similar findings can be
summarized from the results of Codeflaws that 2-HOMs perform
best, while 4-HOMs and 5-HOMs have the worse performance
in that case. This is mainly attributed to the fact that some
HOMs are closed to the correct programs and these HOMs are
effective for fault localization. Besides, other HOMs different
from the correct programs may have a negative influence on
the fault localization effectiveness, which perform worse with
more higher orders (e.g., 4-HOMs and 5-HOMs). Also, our
findings are consistent with the study of Nguyen et al. [28] that
high quality and reasonable HOMs (HOMs are more realistic
complex faults [76]) can be found from 2-HOMs and 3-HOMs.
Besides, the study of Wong et al. [64] shows that lower-order
HOMs (e.g., 2-HOMs) are more likely to be SSHOMs [21]
(strongly subsuming HOMs), which is a kind of HOMs with
higher test effectiveness.

B. Fault Type and Mutation Operator

In this section, we aim to investigate the relationship between
faults and mutation operators. For each fault in the program, we
classify it into a specific kind of mutation operator according to
the comparison of “faulty” and “corrected” program versions.
However, some faults cannot be classified following the rule of
mutation operators, such as omission faults. As a result, the faults
are classified into 16 categories, which are shown in Table XI.
The top 15 categories are grouped by the mutation operators (see
Table IV) and the “Other” category includes faults that cannot
be classified.

Table XI shows the distribution of different fault types in two
benchmarks. For SIR, 43.8% of the faults are grouped into the

TABLE XI
DISTRIBUTION OF THE FAULTS IN MUTATION OPERATORS

“CRCR” category, which accounts for the largest proportion
of the total. Followed by 20.6% of the faults which cannot be
classified in SIR. For Codeflaws, the most faults (26.9%) are
the “SSDL” type, meaning these faults can be fixed by deleting
the program statement. The unclassified faults in Codeflaws also
accounted for 21.9% of all faults. Besides, we can find that the
distribution of faults are similar in SIR and Codeflaws, with
high proportion of ‘CRCR,’ ‘OLLN,’ ‘Other’ types of faults and
without any “OAAN,” “OAAA,” “OLNG,” “OBBA,” “OBBN”
types of faults. These findings may help the programmers to
avoid these kind of faults in the real-world debugging process.

Furthermore, we collect the localization results of each fault
classified in Table XI. We also useTop-N andMAP to evaluate
the performance of different techniques on each fault type. Note
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TABLE XII
Top-N AND AVERAGE MAP OF DIFFERENT FAULT TYPES ON SIR WITH Ochiai FORMULA

that we only show the result of fault types with more than one
fault. Tables XII and XIII present the detailed results in two
benchmarks. For SIR, 3-HOMs performs better on “CRCR,”
“OCNG,” “SSDL,” and “Other” fault types (with higher MAP
values). In most cases, FOMs and HOMs can localize the top
nine kinds of faults more precisely than faults in the “Other” cat-
egory (with higher MAP values). For Codeflaws, 2-HOMs have
higher MAP values on “OLLN,” “ORRN,” “VTVD,” “VDTR”
“SSDL,” and “Other” fault types. Also, the faults can be clas-
sified into specific mutation operators that have better fault
localization effectiveness when using FOMs and HOMs. This
suggests that mutation-based techniques place the faults that can
be classified exactly by the mutation operators in a higher rank
than the unclassified faults. This finding is consistent with the
competent programmer hypothesis [46] that the programs that
are close to being correct and these faults can be revealed by
mutating. Moreover, Debroy and Wong [37] found that 20.70%
of the faults can be fixed using some specific mutant operators in
their study. Therefore, some mutation operators are better than
others and the choice of mutation operators is important for
the mutation-based techniques. Selecting and discovering more

useful mutation operators for detecting faults becomes a future
research problem.

VII. THREATS TO VALIDITY

A. Internal Validity

The first threat is the order of HOMs used in our study.
Previous higher-order mutation testing has applied various or-
ders [21], [22], [46], [77]–[79] (from 2-order to 70-order). We
limited the HOMs to be between the second-order to fifth-order
and did not consider higher-order mutants since previous stud-
ies [28], [63], [64] have shown that HOMs from the second order
to fifth order are enough for finding valuable and reasonable
HOMs in mutation testing. Moreover, the number of mutants
grows exponentially with the order [21], which results in the
higher computational cost in adopting HOMs with higher orders.

The second threat is the number of HOMs we generated and
the test cases we used in our study. The number of HOMs
generated for each order was the same as the number of FOMs,
but the number of mutants compiled varies in different order of
HOMs, which means the actual number executed for each order
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TABLE XIII
Top-N AND AVERAGE MAP OF DIFFERENT FAULT TYPES ON CODEFLAWSWITH Ochiai FORMULA

of HOMs is different. Moreover, we use all test cases provided
by the benchmarks and different number of test cases may lead to
different results. Therefore, the settings of mutants and test cases
will influence the fault localization effectiveness. In the future,
we will increase the search space of HOMs according to their
order and find more efficient HOMs for fault localization. We
will also investigate the impact of different numbers of mutants
and test cases in our future work.

The third threat is the choice of mutation tools used in our
empirical experiments. To alleviate this threat, we choose Pro-
teum [60] as our mutation tool, which is popular and has been
adopted in previous studies [12], [13], [19]. We will explore
more mutation tools (such as MiLu [80]) to investigate the
generalization of our empirical findings.

The fourth threat is the generation method of multiple-fault
programs. For SIR, we combined the single real faults to gener-
ate multiple fault versions. These artificially generated multiple

faults may be different from the real faults, which will lead to dif-
ferent results in our experiments. Therefore, we have selected the
benchmark Codeflaws due to the fact that if contains real-world
programs. In the future studies, we intend to choose alternative
real-world multiple faults programs (such as CoREBench [81])
to investigate whether these findings are still valid.

B. External Validity

One external validity concerning the effectiveness of HOMs
is the representatives of the subject programs we used. We have
considered SIR [38] and Codeflaws [39] as our benchmarks
which are all written in the C language. Although some of the
programs are real-world and large-scale, these programs only
represent limited classes of programs. In the future, we aim
to conduct experiments on more large-scale programs (such as
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CoREBench [81]) to investigate whether different results may
be generated.

Another threat is the implementation correctness of MBFL.
In our experiment, we implemented MBFL strictly based on the
description of the original studies [12], [18] and the actual fault
localization performance is very close to the results in these
studies.

C. Construct Validity

In this experiment, we include three formulas (Dstar [44],
Jaccard [45], and Ochiai [41]) as the SBFL techniques and
MBFL formulas. There exist other formulas and fault local-
ization techniques which are not included. Different formulas
and techniques may have different results. For example, both
DeepFL [68] and PRINCE [58] are representative machine
learning-based fault localization techniques and are used to com-
pare with new machine learning-based fault localization tech-
niques. Also, there are various mutation-based techniques [82]–
[84] and the result may be different using these techniques.

We use metrics EXAM , Top-N , MAP to evaluate the per-
formance of a technique. We also extend the analysis of MBFL
execution cost using the metric MTP . EXAM is popular, and
used in evaluating the performance of fault localization tech-
niques [4], [11].Top-N (other studies [58], [69] refer to acc@n)
is a metric that uses absolute ranks rather than percentages of
program inspected [58], [68], [69]. MAP has been widely used
in previous fault localization studies [58], [69]. MTP counts
the number of mutant runs for test cases rather than the run-time
of test cases [54], [73]. The use of other metrics may produce
different results. In the future, we also want to evaluate the
performance of the techniques in terms of other performance
metrics (such as wef@n [69] and MAR [68]).

VIII. CONCLUSION

In this article, we conducted a large-scale empirical study to
investigate fault localization effectiveness when using FOMs
and HOMs in the SFL-scenario and the MFL-scenario. The
experiments on two public benchmarks, i.e., SIR and Codeflaws,
showed that in the SFL-scenario, FOMs and 2-HOMs have
better fault localization effectiveness. In the MFL-scenario, both
2-HOMs and 3-HOMs performed better than SBFL techniques
and FOMs. Further statistical tests showed that there was a sig-
nificant difference between FOMs and 2-HOMs in both the SFL-
scenario and the MFL-scenario. Moreover, MBFL techniques
using Ochiai had better performance than other formulas. We
also evaluated the cost for HOMs on fault localization. HOMs
had lower cost than FOMs and the high computational problem
still existed such that researchers should propose methods to
reduce the cost of using HOMs on fault localization.

In the future, we first want to further investigate the method-
ology of HOMs that can help improve the effectiveness of fault
localization. And then we will investigate the mutant reduction
techniques with ML-based and search-based algorithms [24].
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