
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON RELIABILITY 1

Theoretical Analysis and Empirical Study on the
Impact of Coincidental Correct Test Cases

in Multiple Fault Localization
Yonghao Wu , Yong Liu , Member, IEEE, Weibo Wang , Zheng Li , Xiang Chen , Member, IEEE,

and Paul Doyle

Abstract—To improve the efficiency of the fault localization pro-
cess, different automatic fault localization approaches have been
proposed. Among these approaches, the spectrum-based fault lo-
calization (SBFL) approach has been widely used and studied due to
its lightweight and high effectiveness. However, while the existence
of coincidental correct (CC) test cases can influence the usefulness
of SBFL in single-fault programs, their influence on multiple fault
programs has not been thoroughly investigated. Therefore, in this
article, we conduct a theoretical analysis and an empirical study to
investigate the effect of CC test cases on multiple fault localization.
The theoretical analysis is based on a suspiciousness calculation
formula of SBFL, which divides CC test cases into three categories
(specific, irrelevant, and unspecific) according to their association
with a specific faulty statement. Following this analysis, we con-
duct an empirical study on two well-known open-source reposito-
ries (SIR and Defects4J), and the experimental results verify the
correctness of our theoretical analysis. Specifically, reducing the
number of specific CC test cases for a faulty statement can improve
or maintain fault localization accuracy, while eliminating irrelevant
CC test cases can have a negative effect. Finally, we design a CC test
case identification solution based on the isolation-based multiple
fault localization approach and demonstrate its effectiveness via a
simulation experiment.

Index Terms—Coincidental correct test case, empirical study,
fault localization, multiple fault, theoretical analysis.

I. INTRODUCTION

A S SOFTWARE complexity increases, software testing
activities involving fault localization and program repair

Manuscript received November 28, 2021; revised March 25, 2022; accepted
April 2, 2022. This work was supported in part by the National Natural
Science Foundation of China under Grant 61902015, Grant 61872026, Grant
and 61672085, and in part by Nantong Application Research Plan under Grant
JC2021124. Associate Editor: Y. Dai. (Corresponding authors: Zheng Li; Yong
Liu.)

Yonghao Wu, Yong Liu, Weibo Wang, and Zheng Li are with the Col-
lege of Information Science and Technology, Beijing University of Chem-
ical Technology, Beijing 100013, China (e-mail: appmlk@outlook.com; ly-
ong@mail.buct.edu.cn; 1095719690@qq.com; lizheng@mail.buct.edu.cn).

Xiang Chen is with the School of Information Science and Technology,
Nantong University, Nantong 226007, China (e-mail: xchencs@ntu.edu.cn).

Paul Doyle is with the School of Computer Science, Technological University
Dublin, D07 EWV4 Dublin, Ireland (e-mail: paul.doyle@tudublin.ie).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR.2022.3165126.

Digital Object Identifier 10.1109/TR.2022.3165126

have significantly grown, becoming more critical and demand-
ing [1]. When bugs occur in software, developers must identify
the exact location of the faults, and then repair them. The process
of identifying the localization of faulty statements is commonly
referred to as fault localization, and it has been recognized as
one of the most expensive and laborious steps in the entire
debugging activity [2]–[4], as it is frequently challenging to
comprehend the complex internal logic of the program under test
and reason about possible fault locations. Therefore, researchers
developed automatic fault localization approaches to improve
the efficiency of fault localization, and then saved the time
for software delivery [2], [5]. By analyzing the characteristics
of programs, such techniques aim to identify the location of
potentially faulty statements, which can assist developers in
determining the exact location of the fault.

While extensive automatic fault localization approaches have
been developed, the spectrum-based fault localization (SBFL)
approach has received considerable attention due to the fact
that it is a lightweight but highly accurate technique [1],
[3], [5]–[12]. To calculate the suspiciousness of each pro-
gram statement, SBFL uses the execution trace of test cases
(i.e., test case coverage information) and the execution re-
sults of test cases. A statement with a higher suspiciousness
score is more likely to be a faulty statement, allowing de-
velopers to check program statements from high to low, ac-
cording to the suspiciousness rank list. Ideally, developers
want to localize the faulty statement by only checking a few
statements.

However, previous research [10], [13] usually assumed that a
faulty program only contains a single faulty and that each test
case, which executes faulty statements, must produce incorrect
output. The previous assumptions did not conform to the char-
acteristics of the practical application scenario. Recent research
indicates that a faulty program may contain multiple faults (i.e.,
multiple fault localization) and coincidental correct (CC) test
cases. Where a CC test case refers to a test case that executes
faulty statements, but the output is the same as expected [14].
Therefore, the existence of multiple fault programs and CC
test cases breaks the assumptions of previous fault localization
studies, thereby casting doubt on their validity.

As a result, recent studies have explored more practical sce-
narios. Several studies investigated how multiple faults impact

0018-9529 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8788-108X
https://orcid.org/0000-0003-1754-3039
https://orcid.org/0000-0003-4851-7052
https://orcid.org/0000-0002-3938-7033
https://orcid.org/0000-0002-1180-3891
mailto:appmlk@outlook.com
mailto:lyong@mail.buct.edu.cn
mailto:lyong@mail.buct.edu.cn
mailto:1095719690@qq.com
mailto:lizheng@mail.buct.edu.cn
mailto:xchencs@ntu.edu.cn
mailto:paul.doyle@tudublin.ie
https://doi.org/10.1109/TR.2022.3165126

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON RELIABILITY

traditional SBFL approaches [15], [16], which were typically
evaluated in faulty programs with only one faulty statement.
Then, they propose new SBFL approaches to increase the
accuracy of multiple fault localization [9], [13], [17]. Simi-
larly, researchers have designed many strategies to address the
negative impact of CC test cases on fault localization [18]–[25].
However, existing research usually studies CC test cases and
multiple faults separately. That is, studies on multiple fault
localization did not consider CC test cases, whereas studies on
CC test cases also did not consider multiple fault programs.

Therefore, to analyze how multiple faults and CC test cases
interfere with the traditional SBFL approach, we first perform a
theoretical analysis on the effect of CC test cases on the accuracy
of multiple fault localization. In particular, faulty statements
in a faulty program may be executed by different failed test
cases, and different test cases may be related to different faulty
statements [7], [23], [24], [26], [27], so we simulate different
CC test case identification situations in our empirical study.
Specifically, for a specific faulty statement, all CC test cases
can be classified into three categories: 1) specific; 2) unspecific;
and 3) irrelevant. While reducing the number of specific CC test
cases for a specific faulty statement can improve or maintain the
faulty statement’s fault localization accuracy, while eliminating
irrelevant CC test cases can have a negative effect on fault
localization accuracy.

We also conduct an empirical study on two well-known open-
source repositories: 1) software-artifact infrastructure repository
(SIR) [28]; and 2) Defects4J [29], to verify the correctness
of our theoretical analysis. Specifically, inspired by previous
multiple fault localization approaches, we design a CC test case
identification solution based on the isolation-based multiple fault
localization approach. The fault localization results demonstrate
that using the Clean strategy (a detailed description can be found
in Section IV-C) to remove all CC test cases that executed the
faulty statement associated with clusters generated by isolation
methods can improve fault localization accuracy.

In summary, to our best knowledge, the main contributions of
our study can be summarized as follows:

1) We investigate the association between CC test cases
and faults in multiple fault localization, including per-
forming an analysis of test case impact by eliminating
different association types on fault localization accuracy.
According to the relationship between test cases and faulty
statements, we divide all CC test cases into three different
categories: a) specific; b) irrelevant; and c) unspecific. We
find that the accuracy of multiple fault localization can
be improved by reducing the number of specific CC test
cases for a faulty statement, but cannot be improved by
removing irrelevant CC test cases.

2) We conduct an empirical study to analyze how the number
of different types of CC test cases influence the accuracy
of multiple fault localization. Our empirical results verify
our theoretical analysis. We find that reducing the number
of specific CC test cases for a single faulty statement can
improve fault localization accuracy.

3) Motivated by previous multiple fault localization ap-
proaches, we design a CC test case identification solution

based on the isolation-based multiple fault localization
approach in multiple fault programs, and we demonstrate
its effectiveness through a simulation-based experiment.

Reproduction Package: To facilitate replication of our study,
we have shared our source code and data on a GitHub repository.1

The rest of this article is organized as follows. Section II
provides an overview of fault localization techniques (including
coincidental correctness), a summary of relevant related studies,
and describes the motivation for our study. Section III introduces
the theoretical analysis of CC test cases’ negative impact on
multiple fault localization. Section IV introduces the research
questions, subject programs, and performance metrics used in
our experimental study. Section V first discusses the experimen-
tal setup and the detailed result analysis. Then, we summarize
the practical guidelines based on the results of our theoretical
analysis and empirical studies. Section VI discusses observa-
tions through the experiment. Section VII discusses the main
threats to validity of our empirical studies. Finally, Section VIII
concludes this article.

II. BACKGROUND AND RELATED WORK

A. Fault Localization

The traditional approach for fault localization is to debug the
program by inserting breakpoints, but this manual procedure
requires considerable developer effort and time. To increase the
code quality while decreasing software bug debugging time,
researchers have proposed different automated fault localization
approaches. These approaches enable developers to rapidly lo-
calize faults and minimize the time required to review large vol-
umes of code. To date, there have been numerous achievements
in the field of automated fault localization research domain,
which we categorize as follows:

1) The first category is mutation-based fault localization
(MBFL), which analyzes the behavioral similarity be-
tween the faulty program and the mutated program seeded
with artificial faults. MBFL uses a suspiciousness formula
to calculate the fault probability of each statement to
assist the developer in localizing the faulty statements [4].
Although MBFL can achieve a high fault localization
accuracy, it requires the execution of all test cases on
a large number of mutated programs, which has a huge
mutation execution cost [30]. The usage of MBFL in
practical software fault localization is limited due to this
disadvantage.

2) The second category is information retrieval-based fault
localization (IRFL), which extracts information from texts
(such as bug reports) to find the location of faults in a
program. For example, Zhou et al. [31] proposed an infor-
mation retrieval fault localization tool called BugLocator,
which is based on the revised vector space model. This
tool uses information from similar fixed bugs to adjust
the ranking to help localize the bug-related files. Saha et
al. [32] argued that for information retrieval-based bug

1[Online]. Available: https://github.com/appmlk/CC-in-multiple-fault-
program-empirical-study.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

https://github.com/appmlk/CC-in-multiple-fault-program-empirical-study.
https://github.com/appmlk/CC-in-multiple-fault-program-empirical-study.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 3

TABLE I
SUSPICIOUSNESS FORMULAS

localization, it is better to extract information when the
information is structured according to the code structure.
Based on this finding, they proposed the method bug
localization using information retrieval, and found that
their proposed method performs better than BugLocator.
However, Wang et al. [33] evaluated the effectiveness
of IRFL, and found a dilemma with IRFL techniques.
Specifically, the fault localization performance of IRFL
is highly dependent on the often inconsistent quality of
bug reports, which may limit the accuracy achieved using
IRFL approaches.

3) The third category is SBFL, which is based on the as-
sumption that faulty statements are executed by a larger
number of failed test cases than that of passed test cases.
SBFL suspiciousness formulas were designed based on
this assumption to calculate the probability of each state-
ment being a faulty statement using test case coverage
information and execution results [5], [34].
Commonly used suspiciousness formulas in SBFL include
Jaccard [35], Ochiai [36], and Dstar [37], which are given
in Table I. In this table, fail(s) and pass(s) represent
the number of times the statement(s) were executed by
failed and passed test cases, respectively, while totalfail
and totalpass represent the number of failed and passed
test cases, respectively. The possible values for sus(s) in
Jaccard [35], Ochiai [36], and Dstar∗ [37] is between 0 and
1. It should be noted that when Wong et al. [37] proposed
the Dstar formula, a sample was used, as an example, to
illustrate the influence of exponent * on the performance of
fault localization. In their example, when exponent * was
set to 3, the suspiciousness rank of the faulty statement
can exceed most of the correct statements and be tied
for first place. Furthermore, Wong et al. [37] found that
the performance of Dstar increases with the increase of
exponent *. Therefore, in the rest of this article, we use
Dstar3 to denote Dstar∗. According to these three formulas
in Table I, the suspiciousness value corresponding to each
statement can be calculated, and the higher the suspicious-
ness for a statement, the more likely it contains a fault.
Table II provides an example of coverage information
and execution results. This example illustrates a program
segment with five statements (s1, s2, s3, s4, and s5) and
five test cases (t1, t2, t3, t4, and t5). Table II also includes

the statement coverage and execution results, with bugs
occurring in statements s2 and s4. Black bullets (•) are
used to indicate that the statement is covered by the
corresponding test case, and blank space indicates that
the statement is not covered by the corresponding test
case. Test case execution results are represented by P or
F, which indicates that the test case has passed or failed,
respectively. Columns 7–9 of Table II give the suspicious-
ness of each statement calculated by three formulas: 1)
Jaccard; 2) Ochiai; and 3) Dstar3. The fault localization
result shows that the suspiciousness value of the faulty
statement s2 calculated by Jaccard, Ochiai, and Dstar3 are
0.67, 0.82, and 8, respectively, which are ranked in order
of suspiciousness in most cases.

4) The fourth category is slicing-based fault localization [15].
Slicing a program can generate a subprogram based on
user-specified slicing criteria. By performing program
analysis, techniques, such as the data flow equation calcu-
lation and dependency analysis, can be used to extract sub-
programs that may affect the slicing criteria. Slicing-based
fault localization works on the principle that if a failed
test case discovers that a variable’s value is different from
the expected value, the fault is likely to occur in the slice
containing this variable, and thus, the search space for fault
localization can be limited to this slice without checking
the whole program. However, this method relies on data
flow analysis for fault localization and has relatively low
accuracy.

In addition, to the abovementioned four commonly used
approaches, there are also other types of approaches, such
as model-based strategies [38], genetic algorithm-based strate-
gies [13], and neural network-based strategies [39], which can
be applied to automated fault localization.

Among these approaches, the SBFL approach has been widely
used because of its lightweight algorithm and promising perfor-
mance [5], [6], [13], [16], [25], [34], [40], [41]. Current studies
on SBFL have achieved promising fault localization accuracy in
single-fault programs. However, the aforementioned fundamen-
tal assumptions of the traditional SBFL cannot directly apply
to multiple fault programs. Because a correct statement may
be covered by several failed test cases caused by distinct faulty
statements in a multiple fault program, the correct statement will
be covered by more failed test cases than other faulty statements.
In this situation, the correct statement is more suspicious than the
faulty statement, which can result inefficient fault localization
when utilizing a traditional SBFL approach on a multiple fault
program.

B. Multiple Fault Localization

A multiple fault program refers to a program under test that
contains multiple faulty statements. However, the key assump-
tions of traditional SBFL are not applicable to multiple fault
programs.

In a multiple fault program, the coyesrrect statement may be
covered by more failed test cases than other faulty statements. In

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON RELIABILITY

TABLE II
SIMPLE EXAMPLE FOR THE PROCESS OF SBFL

this case, the correct statement has a higher degree of suspicious-
ness than the faulty statement, which leads to the problem of
low fault localization efficiency when using a traditional SBFL
approach on multiple fault programs.

To improve the efficiency of multiple fault localization, re-
searchers have proposed different approaches [42]. Previous
multiple fault localization approaches can be mainly divided into
three categories: 1) debugging approaches that localize one fault
at a time; 2) debugging approaches that localize multiple faults at
a time; and 3) parallel debugging fault localization approaches.

One-fault-at-a-time approaches are proposed based on the
assumption that developers will localize all faulty statements
in a multiple fault program through multiple iterations [6], [43],
[44]. One iteration of the developer’s debugging process will
only localize and correct one program fault when employing a
one-fault-at-a-time debugging approach. For example, suppose
the faulty program contains two faulty statements. In this case,
the developer must execute two fault localization iterations to
localize all faulty statements, where multiple fault localization
can be achieved via a variety of debugging techniques, such
as SBFL, MBFL, or slicing-based fault localization, in each
iteration.

Multiple fault-at-a-time approaches are proposed based on the
assumption that developers localize faulty statements in multiple
fault programs in a single iteration [9], [13], [45]. With the proper
strategy, debugging many faults at once can efficiently localize
all or most of the faulty statements in a program, which can
improve debugging efficiency and decrease software delivery
time. Researchers currently proposed methods to improve the
accuracy of the ranking of faulty statements using the suspicious-
ness metric, thus decreasing the workload of fault localization
in a single iteration; or using neural network methods to localize
multiple faulty statements at once. For example, by formalizing
the multiple fault localization problem into a search problem,
Zheng et al. [13] proposed a genetic algorithm-based multiple
fault localization framework.

Parallel debugging approaches assume that multiple devel-
opers can work on the same program concurrently, which can
reduce the time for fault localization [6], [46]. The isolation-
based fault localization approach is a form of parallel de-
bugging that achieves a high fault localization accuracy [16],
[47]. Therefore, many recent studies used isolation-based fault
localization techniques to localize multiple faults [17], [18],
[34], [48].

When using isolation-based fault localization, the developer
divides a complex debugging task into smaller debugging as-
signments, which can allow multiple developers to work on
multiple tasks simultaneously. Specifically, the failed test cases
caused by the same faults are grouped into the same cluster,
thereby generating a cluster centered on the failure, that is, the
failed test cases within the same cluster are related to the same
faulty statement. Then, using a single cluster of failed test cases
and some or all of the passed test cases, a failure-centric sus-
piciousness ranking list can be created. By inspecting the code
according to this ranking, developers can quickly identify the
faulty statement corresponding to one cluster. The key challenge
of isolation-based fault localization is determining the proper
clusters for the failed test cases. Since researchers do not know
the number of faulty statements in advance, it is impossible to
identify the correct number of clusters or to assign initial centers
to these clusters, which has resulted in the development of nu-
merous unsupervised clustering-based approaches for isolating
failed test cases. For example, current research has leveraged
several clustering algorithms, such as hierarchical clustering [6],
k-means clustering [49], and k-medoids clustering [16], to an-
alyze the coverage information and isolate the failed test cases,
thus completing the process of parallel debugging [6], [16], [17],
[49], [50].

As illustrated by the abovementioned three strategies, most
multiple fault localization approaches aim to increase accuracy
and efficiency in locating multiple faults. For example, the one-
fault-at-a-time strategy attempts to optimize the efficiency of
the first faulty statement localized during each iteration. The
multiple-fault-at-a-time strategy improves the efficiency of each
faulty statement localized during a single iteration in a multiple
fault program. While parallel debugging based techniques focus
on increasing the number of faulty statements that can be located
in each iteration, they decrease the number of iterations required.

Related studies on multiple fault localization have made
progress and achieved many promising results. However, the
existence of CC test cases has not been thoroughly investigated.
According to recent studies [19], [20], CC test cases are prevalent
in the software testing process and have a negative effect on
SBFL. As a result, detecting and processing CC tests effectively
can help SBFL run more efficiently in multiple fault programs.

C. Coincidental Correct Test Cases

Coincidental correctness (CC) refers to the situation during
the execution of a test case where the program enters an abnormal
state due to a fault in execution, but the output of the program

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 5

is consistent with the expected output. The test case that causes
this situation is called a CC test case [51]. Specifically, when
the fault in a program needs to be detected by a test case, the
following three conditions must be met [10], [19], [23], [25],
[52].

1) The faulty code causes the program to be infected and
enter an abnormal state.

2) The abnormal state continues to propagate and affect the
subsequent execution of the program.

3) These exceptions and subsequent fault propagation affect
the output of the program, causing the actual output to be
inconsistent with the expected output.

However, there are some exceptions in the execution of test
cases as follows.

1) The test case executes the faulty code in the program and
enters an abnormal state, but these exceptions have no
effect on the subsequent program execution, that is, the
test case only meets the first condition.

2) The test case executes the program and enters an abnormal
state. These abnormal states continue to propagate and
cause the program to affect subsequent execution, but
these exceptions are not reflected in the output. The actual
output is exactly the same as the expected output, that is,
the test case only meets the first and second conditions,
but does not meet the third condition.

In both exception cases, the test cases will lead to coincidental
correct behavior, and those test cases will be referred to as CC
test cases. Taking Table II as an example, s4 is a statement that
contains a fault, t3 executes the faulty statement s4, but no failure
can be detected, so t3 is determined to be a CC test case.

Experimental results of recent studies have shown that the
existence of CC test cases can significantly affect the effect of
fault localization. For example, Ball et al. [22] claimed that
according to their fault localization approach, CC test cases
caused three of their fifteen experimental programs to fail to
localize the fault. Wang et al. [25] used the Tarantula approach
to conduct empirical research on CC test cases. Their study
showed that the accuracy of fault localization is related to the
proportion of CC test cases in the test suite. As the proportion
of CC test cases in the test suite increases, the accuracy of the
fault localization approach based on SBFL can be significantly
reduced. These previous studies showed that the existence of CC
test cases in the test suite has a negative impact on the accuracy
of fault localization.

Since CC test cases are widespread in programs and seri-
ously affect the accuracy of fault localization, many previous
studies aimed to improve the efficiency of SBFL methods by
identifying CC test cases [18]–[22]. Many of the approaches
for CC test case identification are based on the assumption
that CC test cases are similar to the failed test cases. This
assumption holds in the single-fault case because each CC test
case executes the same faulty statement, and thus, these CC
test cases will share a characteristic similarity with the failed
test cases that also execute the faulty statement. For example,
Masri and Assi [23] proposed an approach to determine a fixed
percentage of test cases, as CC test cases based on the possibility
of CC.

Although previously proposed methods are effective in im-
proving fault localization accuracy in the single-fault cases,
these proposed CC identification and processing strategies for
the single-fault hypothesis do not apply to multiple fault cases.
Taking the program given in Table II as an example, t3 is
considered to be a CC test case because of its identical coverage
path to t4. Columns 10–15 in Table II give the suspiciousness
values for each statement after applying the two common CC
processing strategies of Clean t3, i.e., removing t3 from the test
case set, and Relabel t3, i.e., correcting the execution result of
t3 from pass to fail. As given in Table II, the fault localization
accuracy shows a decreasing trend after processing the CC test
cases due to the complex impact of CC on multiple fault cases.
Specifically, the faulty statement s2, which is originally ranked
highest in suspiciousness in most cases, is no longer easily found,
while the correct statement s1 gets the highest suspiciousness
rank. The abovementioned example demonstrates that the pro-
posed CC identification and processing approach for single-fault
cases may have a negative effect on multiple fault cases.

D. Related Work

1) Research on Multiple Fault Localization: Fault localiza-
tion is an active research field in the domain of software en-
gineering research, with different fault localization techniques
proposed based on different scenarios. Similar to our study,
some previous studies also consider multiple fault programs and
coincidental correct test cases during fault localization.

Localizing one-fault-at-a-time is one of the most commonly
used debugging strategies in the field of multiple fault local-
ization research. It has been widely used by developers due to
its simple and easy-to-operate algorithm. For example, Jones et
al. [6] proposed a multiple fault localization approach, which
first uses all failed test cases to localize and fix one faulty
statement at a time. Next, the test cases are re-executed to
use all failed test cases to localize and fix the next faulty
statement, with this process iterating until all faults are fixed.
Subsequently, Kim et al. [53] proposed a variable-based fault
localization (VFL) method to solve the problem of the SBFL
method having poor fault localization ability when the test cases
cover similar information. VFL guides the ranking of program
statements by identifying the suspiciousness variables in the
program. Experimental results based on the Defects4J dataset
have shown that VFL has better localization performance and
has the advantage of being lightweight and more scalable, and
can be combined with other methods to further improve the fault
localization performance. Later, Kim et al. [53] demonstrated
that their proposed method can achieve better fault localization
performance when dealing with multiple fault programs by
using the one-fault-at-a-time strategy. The one-fault-at-a-time
localization strategy has been widely studied for its promising
applications, but by only localizing one fault at a time, it can
negatively impact the developers’ bug fix rate.

Compared to one-fault-at-a-time and parallel debugging ap-
proaches, multiple faults-at-a-time strategy-based fault local-
ization approaches are less well-studied. These approaches are
usually designed with the help of machine learning algorithms

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON RELIABILITY

to localize multiple faulty statements at once. For example,
Wong et al. [54] proposed a multiple fault localization method
based on radial basis functions by combining neural network
algorithms. This method treats the coverage paths of test cases
as feature vectors and uses the execution results of the test
cases as the output data of the neural network. Next, virtual
coverage paths are constructed for each program statement
for the training data. Where each virtual coverage path only
covers one statement, the output of the neural network is the
suspiciousness value of that statement. For example, if a virtual
coverage path is constructed for the third statement in a program,
which contains five statements, the path is “00100”. The virtual
path is fed into the neural network as a feature vector, and the
output value is the suspiciousness value of the third statement.
The experimental results show that this method outperforms
multiple fault localization baselines by using formulas, such
as Crosstab or Tarantula. Zheng et al. [13] proposed a multiple
fault localization framework based on a genetic algorithm, which
encodes program statements into chromosomes and converts
the multiple fault localization problems into the search prob-
lem, so that their proposed framework can localize multiple
faulty statements simultaneously. Researchers have proposed
some approaches from the multiple faults-at-a-time perspective,
and these approaches can achieve better performance than the
baselines. However, the effectiveness of neural network-based
approaches is highly dependent on how the model is constructed,
and the cost in terms of time grows significantly as the program
size increases, which can limit the general applicability of this
kind of approach.

For fault localization approaches based on parallel debugging,
the effectiveness of these approaches depends on the quality
of the clustering results. For these approaches, the failed test
cases are divided into different clusters, and it is expected that
the failed test cases related to each fault can be divided into
the same cluster, so as to reduce the impact of multiple faults
on the effectiveness of the SBFL approach. Jones et al. [6]
proposed an isolation-based fault localization approach, whose
purpose is to reduce the cost of manual debugging in the case of
multiple faults. In isolation-based fault localization, failed test
cases are divided into multiple clusters that target different faults.
Therefore, each fault-focusing cluster will be combined with
passed test cases to get a specialized test suite that targets a single
fault. Finally, different clusters will be allocated to multiple
developers to debug programs in parallel. Their experimental
results have shown that the isolation-based fault localization
approach could effectively help developers reduce the cost of
debugging. Gao and Wong [16] proposed the MSeer approach
to address the challenging problem of determining the number
of faulty statements in a faulty program. This approach can
estimate the number of faulty statements in advance, followed
by the use of fuzzy clustering to cluster the failed test cases,
and classify the cluster to localize the fault. Their experimental
results have shown that MSeer can perform better than the one-
fault-at-a-time approaches and the method proposed by Jones et
al. [6] in terms of both fault localization efficiency and effec-
tiveness. This effective isolation-based strategy for converting
multiple fault localization problems into single-fault localization

problems also inspired our study to design a practical approach
for handling complex CC problems under multiple fault situa-
tions. Further details can be found in Section V-D.

2) Eliminate the Impact of CC Test Cases: Many studies
attempt to alleviate the negative impact of CC test cases in
multiple fault programs. For example, Bandyopadhyay [7]
proposed two approaches that predict CC test cases and used
the prediction results to improve the effectiveness of SBFL. In
the first approach, he assigned lower weights to the CC test cases
to have a lower impact on the final suspiciousness calculation.
In the second approach, he removeed all CC test cases and
used the reduced test cases set to calculate suspiciousness. Miao
et al. [21] further proposed a clustering-based approach. They
used the k-means clustering algorithm to cluster test cases with
similar coverage information into the same cluster. However,
these approaches are mainly proposed for single-fault programs.

Moreover, Hofer [55] applied the SBFL in circuit and spread-
sheet debugging. This study aimed to evaluate the influence of
the removal of the actual coincidental correctness, and the results
showed that the ranking of actual faults never worsens when only
considering single-fault programs; however, the fault localiza-
tion performance can decrease in multiple fault programs. Liu
et al. [56] proposed a weighted fuzzy classification approach,
i.e., fuzzy weighted K-nearest neighbor (FW-KNN), to identify
and manipulate CC test cases. This approach is based on the
fuzzy KNN classification algorithm, which uses failed test cases
as the training data and passed test cases as the test data for
classification. The passed test cases with higher similarity to the
failed test cases will be classified as CC test cases. Experimental
results in single-fault and multifault programs show that the
application of the FW-KNN approach can effectively improve
fault localization performance when compared with traditional
SBFL. Assi et al. [57] improved the effectiveness of test suite
reduction (TSR), test case prioritization (TCP), and SBFL by
using substate profiling. They conducted experiments on the
Defects4J dataset showing that the performance of SBFL could
be further improved after removing CC test cases. Consequently,
Sabbaghi et al. [58] proposed a fuzzy expert system to model the
CC identification process, and proposed a fuzzy CC identifica-
tion approach (FCCI). A set of fuzzy rules, which successfully
correlate the CC identification elements, is used to assess the
CC likelihood of the passed test cases. They evaluated FCCI on
17 open-source programs. Their experimental results suggested
that FCCI could enhance the CC identification and representative
SBFL technology. The abovementioned approaches are effective
in improving the accuracy of fault localization after dealing with
CC test cases, but their study ignores the relationship between
CC and specific faults. That is, it is possible that a passed test
case may be CC for one of the faulty statements in the program,
but not for another faulty statement.

Subsequently, Assi et al. [59] conducted an empirical study on
the impact of CC test cases on three tasks: 1) TSR; 2) TCP; and
3) SBFL. Regarding the SBFL task, by conducting experiments
on the Defeats4J dataset, they found that the negative impact of
CC test cases on SBFL was highly correlated with the used eval-
uation metrics. However, when all CC test cases are removed,
the evaluation results of EXAM and TOP-N evaluation metrics

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 7

decrease in most cases. Later, Assi et al. [59] mentioned that the
presence of multiple faults might lead to the fault localization
accuracy decreasing after clearing CC in their threat analysis.
Similar to our study, Assi et al. [59] also considered that clearing
all CC test cases in a multiple fault program may have a negative
impact on fault localization. Therefore, based on their study, we
further investigated the impact of clearing CC test cases with
different relationships to faulty statements on fault localization
through theoretical analysis and empirical studies.

3) Research on Fault Interactions: Furthermore, existing
studies attempted to investigate the essential differences between
multiple fault and single-fault programs. Multiple faults in a
program may interact in various ways, resulting in unexpected
behaviors that do not exist in single-fault programs. New fault
behaviors exist in various types and have unpredictable nega-
tive effects on traditional single-fault localization techniques.
Debroy and Wang [60] provided a detailed analysis of fault
interactions and proposed the fault masking phenomenon in
an empirical study. Fault masking is an extreme case of mixed
types of faults interacting with each other. When fault-masking
occurs, the failed test case associated with a program fault loses
association with that fault due to fault obfuscation (i.e., the
fault can no longer be executed), while this part of the fault
is simultaneously associated with another program, i.e., the
former is completely masked by the latter, when the former fault
cannot be detected by the test case. Furthermore, Digiuseppe and
Jones [61] conducted an in-depth study of fault interactions and
classified multiple fault behaviors into following four types.

1) Fault Synergy: Increased failures detected by test cases
compared to single-fault programs.

2) Fault Obfuscation: Decreased failures detected by test
cases compared to single-fault programs.

3) Pass/Fail Independence: The faults’ interaction did not
change the pass/fail status of the program.

4) Multitype: Both fault synergy and fault obfuscation occur.
Moreover, Li et al. [62] focused on three types of fault inter-

actions: 1) pass/fail independence; 2) fault masking; and 3) fault
obfuscation, and explored what factors caused their interactions.
By focusing on and analyzing the two fault programs, they found
that fault disturbances usually involve the same variables, which
implies that the occurrence of fault disturbances is somewhat
conditional. Based on the abovementioned study, we found
that the complexity of handling CC test cases in multiple fault
programs is due to the existence of complex fault interactions in
multiple fault programs. However, until now, the identification
and processing of faults interactions in multiple fault programs
has remained a challenging problem [63], [64]. Therefore, we
aim to analyze and study the CC problem in multiple fault
programs, and then design a feasible solution in this study.

III. THEORETICAL ANALYSIS ON THE IMPACT OF CC TEST

CASES ON SBFL

In this section, we conduct a theoretical analysis to explore
the influence of CC test cases on multiple fault localization in
SBFL. Here, we mainly show the analytical approach using the
Jaccard formula. However, an analysis of other classical SBFL

formulas, such as Ochiai and Dstar, can also achieve the same
conclusion. Specifically, we followed the theoretical analysis
model of Zhang et al. [65], who demonstrated that cloning
of failed test cases could effectively improve fault localization
accuracy using the SBFL formula.

A. Problem Formulation

Given a faulty program P and a set of test cases T , the faulty
programP is composed of program statementsS, which include
one or more faulty statements SF (SF ∈ S). The test cases T
are classified into passed test cases Tp, failed test cases Tf , and
CC test cases Tc, i.e., T = Tp ∪ Tf ∪ Tc.

As discussed in Section II, most multiple fault localization
approaches aim to increase the accuracy of each faulty state-
ment’s localization. Therefore, we conduct our theoretical study
by analyzing the influence of the number of CC test cases on
a single faulty statement. However, CC test cases on multiple
fault programs will present more complex behaviors, as each CC
test case may be caused by different or even numerous faulty
statements. Thus, for each faulty statement, we first need to
categorize all CC test cases according to their relevance to the
faulty statement.

According to whether specific faulty statements are covered,
each failed or CC test case can be related to one or more
faulty statements. For instance, if the test case t (t ∈ (Tf ∪ Tc))
covers the faulty statement Sa (Sa ∈ SF), the failed test case
t is related to the statement Sa, which can be expressed as
cov(Sa, t) = 1. If the test case t does not cover the faulty state-
ment Sa, cov(Sa, t) = 0, then for a specific faulty statement Sa,
all test cases can be classified into three categories: 1) specific;
2) unspecific; and 3) irrelevant. Specifically, these three different
categories can be formally defined as follows.

1) Specific: CC test cases are only related to faulty
statement Sa, and not related to other faulty state-
ments. These type of test cases can be denoted as
Tcs(Sa), where Tcs(Sa) = {t ∈ Tc|cov(Sa, t) = 1} −
{t ∈ Tc|cov(f, t) = 1, f ∈ F, f �= Sa}.

2) Irrelevant: CC test cases are not related to faulty statement
Sa. These type of test cases can be denoted as Tci(Sa),
where Tci(Sa) = {t ∈ Tc|cov(Sa, t) = 0}.

3) Unspecific: CC test cases are not only related to
faulty statement Sa, but also related to other faulty
statements. These type of test cases can be denoted
as Tcu(Sa), where Tcu(Sa) = {t ∈ Tc|cov(Sa, t) = 1} ∩
{t ∈ Tc|cov(f, t) = 1, f ∈ F, f �= Sa}.

In our study, we aim to investigate whether the SBFL accuracy
can be improved by reducing the number of test cases in each
of the abovementioned three categories.

B. Problem Simplification

In this section, we simplify our comparison of fault local-
ization accuracy to a suspiciousness rank comparison. Because
the suspiciousness rank list directly reflects the efforts associ-
ated with fault localization, a higher rank of faulty statements
indicates a more effective approach for fault localization. As
a result, when the number of CC test cases decreases, we can

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

observe the changing trends of SBFL accuracy by evaluating the
suspiciousness rank changing trends of faulty statements.

To clearly illustrate the changing trend of the suspiciousness
rank when eliminating CC test cases, we classify all statements
into three subsets (i.e., SH , SE , and SL) as follows.

1) SH consists of all statements with suspiciousness higher
than the faulty statementSa, that is,SH ={Si∈S | Sus(Si)
> Sus(Sa)}.

2) SE consists of all statements with suspiciousness equal to
the faulty statement Sa, that is, SE = {Si ∈ S | Sus(Si) =
Sus(Sa)}.

3) SL consists of all statements with suspiciousness lower
than the faulty statementSa, that is,SL= {Si ∈S | Sus(Si)
< Sus(Sa)}.

Where Sus(Sa) means the suspiciousness value of the state-
ment Sa, calculated by the suspiciousness formula. We can
find that increasing the size of SL leads to promising results
because the suspiciousness rank of faulty statements increases.
In contrast, increasing the size of SH leads to unsatisfactory
results.

Then, we design a comparison function T based on the
Jaccard formula to estimate the changing trend of SH , SE ,
and SL. We let totalfail = F , totalpass = P , fail(Si) = a (a ∈
[0, F]), fail(Sa) = b (b ∈ [0, F]), pass(Si) = c (c ∈ [0, P]), and
pass(Sa) = d (d ∈ [0, P]), where c represents the size ofC andd
represents the size of D. The function T can then be constructed
as follows:

T = Jaccard(Si)− Jaccard(Sa)

=
fail(Si)

totalfail + pass(Si)
− fail(Sa)

totalfail + pass(Sa)

=
a

P + c
− b

P + d

=
a(P + d)− b(P + c)

(P + c)(P + d)
. (1)

When T < 0, it means that the suspiciousness of statement
Si is lower than that of the faulty statement Sa, and Si ∈ SL.
Similarly, T = 0 means that Si ∈ SE , and T > 0 means that
Si ∈ SH . Given that the value of the denominator in formula (1)
must be larger than 0, we can use the numerator (a(P + d)−
b(P + c)) to simplify the calculation.

Moreover, the statements Si and Sa may be executed by the
same passed test cases. We let this part of the pass test cases be
E, i.e., E = C ∩D, with e being the length of E, and we can
let d = e+ d′ and c = e+ c′, so the numerator of formula (1)
can be structured as (a− b)e+ (a− b)F + ad′ − bc′.

If there exists Si, which can make T become equal to or less
than 0 from a value larger than 0, after the reduction of CC
test cases, we can say that the size of SL increases and that of
SH decreases, which means the fault localization accuracy is
improved. Similarly, if there exists Si, which makes T become
equal to or larger than 0 from less than 0, the changing process
leads to lower fault localization accuracy.

Fig. 1. Function graph of G(d′). (a) (a− b)e+ (a− b)F − bc′ > 0. (b)
(a− b)e+ (a− b)F − bc′ = 0. (c) (a− b)e+ (a− b)F − bc′ < 0.

C. Theoretical Analysis

In the rest of this section, we analyze the relationship between
T and 0 before and after the reduction of the following three
types of CC test cases.

1) Specific CC Test Cases: When we reduce the number of
specific test cases, only the value of d′ decreases. Thus,
the independent variable is d′. We can then construct the
function by using the numerator of T as follows:

G(d′) = ad′ + (a− b)e+ (a− b)F − bc′ (2)

where a must be larger than 0, so G(d′) is a monotone
increasing function. The possible function graphs ofG(d′)
are shown in Fig. 1.
Fig. 1 shows the following set of possible findings.
a) In Fig. 1(a), the value of G(d′) is always larger than

0, which indicates that the statement Si is always a
member of the SH set.

b) In Fig. 1(b), the value of G(d′) will decrease to 0 when
d′ = 0, so the statement Si may change from the SH

set to the SE set.
c) In Fig. 1(c), the value of G(d′) will decrease to 0

when d′ = d0, and G(d′) < 0 when d′ < d0. So, the
statement Si may change from the set SH to the set
SE or the set SL, or change from the set SE to the set
SL.

Therefore, regardless of the type of the function graph,
the accuracy of fault localization will maintain or improve
after removing specific CC test cases.

2) Irrelevant CC Test Cases: While reducing the irrelevant
test cases, only the value of c′ will decrease, so the inde-
pendent variable is c′. We can then construct the function
based on the numerator of T as follows:

G(c′) = −bc′ + (a− b)e+ (a− b)F + ad′ (3)

where b must be larger than 0, so G(c′) is a monotone
decreasing function. The possible function graphs ofG(c′)
are shown in Fig. 2.
Fig. 2 shows the following set of possible findings.
a) In the situation shown in Fig. 2(a), the value of G(c′) is

always less than 0, so the statement Si always belongs
to the SL set.

b) In the situation shown in Fig. 2(b), the value of G(c′)
will increase to 0 when d′ = 0, so the statementSi may
change from the set SL to the set SE .

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 9

Fig. 2. Function graph of G(c′). (a) ad′ + (a− b)e+ (a− b)F < 0. (b)
ad′ + (a− b)e+ (a− b)F = 0. (c) ad′ + (a− b)e+ (a− b)F > 0.

Fig. 3. Function graph of G(e) while a > b. (a) (a− b)F + ad′ − bc′ > 0.
(b) (a− b)F + ad′ − bc′ = 0. (c) (a− b)F + ad′ − bc′ < 0.

c) In the situation shown in Fig. 2(c), the value of G(c′)
will increase to 0 when c′ = c0, and G(c′) > 0 when
c′ > c0. So, the statement Si may change from the set
SL to the set SE or the set SH , or change from the set
SE to the set SH .

Therefore, after removing the irrelevant CC test cases, the
accuracy of fault localization will either maintain or worse.

3) Unspecific CC Test Cases: While removing the unspecific
test cases, the value of ewill decrease. So, the independent
variable is e. The function can then be constructed as
follows:

G(e) = (a− b)e+ (a− b)F + ad′ − bc′ (4)

where the function slope is (a− b), its polarity is not con-
stant. So we will continue our analysis in three situations:
a) a− b > 0; b) a− b = 0; or 3) a− b < 0.

When a− b > 0,G(e) is a monotone increasing function, the
possible function graphs of G(e) are shown in Fig. 3.

As these function graphs have the same shape as Fig. 1, we
can draw the same conclusion as that of specific CC test cases.
Specifically, if a− b > 0, after removing the unspecific test
cases, the fault localization accuracy will maintain or improve.

When a− b > 0, G(e) is a constant, the possible function
graphs of G(e) are shown in Fig. 4.

In Fig. 4, we can find that the reduction of CC test cases
cannot impact the value of G(e). Therefore, if a− b = 0, the
fault localization accuracy will maintain.

When a− b < 0, G(e) is a monotone decreasing function,
the possible function graphs of G(e) are shown in Fig. 5.

As the function graphs have the same shape as Fig. 2, we can
draw the same conclusions as that of irrelevant CC test cases. As
a result, if a− b < 0, while reducing the unspecific test cases,
the fault localization accuracy will maintain or get worse.

Fig. 4. Function graph of G(e) while a = b. (a) G(e) > 0. b) G(e) = 0.
(c) G(e) < 0.

Fig. 5. Function graph of G(e) while a < b. (a) (a− b)F + ad′ − bc′ < 0.
(b) (a− b)F + ad′ − bc′ = 0. (c) (a− b)F + ad′ − bc′ > 0.

Fig. 6. Change process of G(e) function when d′ decreases. (a) (a− b)F +
ad′ − bc′ > 0. (b) (a− b)F + ad′ − bc′ < 0.

However, this does not mean that reducing the number of
unspecific CC test cases forSi will irreversibly lead to lower fault
localization accuracy. Further research reveals that the lower
accuracy of fault localization can be attributed to the incomplete
reduction ofSi related CC test cases. If we continue to reduce the
Si related CC test cases until it no longer exists, the accuracy of
fault localization would be improved to a better level than when
no CC test cases are processed. Fig. 6 intuitively illustrates this
process.

Where the left-hand side side of Fig. 6 is a more detailed
representation of Fig. 5(c). (a− b)F + ad′ − bc′ > 0 leads to
the function graph of G(e) intersecting the y-axis above the
x-axis. If we continue to reduce the Si related CC test cases, the
value of d′ would decrease. Because (a− b) < 0 and bc′ > 0,
if the value of d′ decreases to 0, (a− b)F + ad′ − bc′ < 0, and
the entire function graph of G(e) would drop below the x-axis,
which is shown in the right-hand side side of Fig. 6, then the fault
localization accuracy will maintain no matter how the number
of unspecific CC test cases changes.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

D. Summarization of Theoretical Analysis

Based on the abovementioned rank-oriented theoretical anal-
ysis, for each faulty statement of a multiple fault program, we
can draw the following conclusions:

1) Reducing the specific CC test cases of this faulty statement
can improve or maintain the fault localization accuracy of
this faulty statement.

2) Reducing the irrelevant CC test cases of this faulty state-
ment can decrease or maintain the fault localization accu-
racy of this faulty statement.

3) Reducing the unspecific CC test cases of this faulty state-
ment may lead to unpredictable results, but we can ensure
that the fault localization accuracy cannot be decreased
by removing more CC test cases related to this faulty
statement.

IV. EMPIRICAL STUDY DESIGN

In this section, we conduct an empirical study to analyze
the impact of CC test cases on SBFL in faulty programs with
multiple faulty statements, and verify the correctness of our
theoretical analysis, which is analyzed in Section III.

A. Research Questions

We conduct our empirical study to address the following four
research questions.

1) RQ1: How Prevalent are CC Test Cases in Faulty Pro-
grams? CC test cases can weaken the effectiveness of
SBFL [10], [26], [51]. Investigating their prevalence can
find the relationship between the distribution of CC test
cases and the program faults. In this RQ, we analyze
the prevalence of CC test cases in programs that contain
multiple faulty statements, which can comprehensively
improve our understanding of CC test cases.

2) RQ2: Can the Proposed CC Identification Approaches
for Single-Fault Programs Increase the Accuracy of Fault
Localization in Multiple Fault Programs? Previous stud-
ies on CC test cases have proved both theoretically and
experimentally that decreasing the number of CC test
cases in single-fault programs can significantly improve
fault localization accuracy [18], [19], [21], which is why
traditional CC test case handling approaches usually tend
to eliminate all CC test cases. However, we demonstrate
theoretically in this study that reducing CC test cases in a
multiple faults situation may have a negative effect on fault
localization accuracy. In this RQ, we aim to eliminate all
CC test cases from the original test suite, which can help us
to investigate the effect of traditional CC test case handling
strategies on the accuracy of multiple fault localization.

3) RQ3: How Does SBFL Accuracy Change When Three
Categories of CC Test Cases are Removed in Multiple
Fault Programs? CC test cases can generate more complex
results due to multiple faulty statements [25], [27], [66],
and we define and analyze these CC test cases in detail in
Section III. In this RQ, we aim to verify the correctness of
our theoretical analysis, specifically looking at the impact

of the reduction of specific, unspecific, and irrelevant CC
test cases on fault localization accuracy. The result of this
process will facilitate further insights and suggestions for
better CC test case identification and processing.

4) RQ4: How do CC Test Cases Affect SBFL Accuracy When
Applying Isolation-Based Fault Localization Approaches
in Multiple Fault Programs? Isolation-based fault local-
ization approaches were proposed to solve multiple fault
programs [17], [34], [48]. However, few approaches at-
tempt to address CC test cases in multiple fault localiza-
tion. In this RQ, we aim to investigate the influence of CC
test cases on isolation-based fault localization approaches,
which can examine how the current fault localization
approaches perform in the presence of CC test cases.

B. Subject Programs

We collected 24 open-source programs as our experimental
subjects. These 24 programs include eight programs developed
using the C programming language (i.e., Grep, Print tokens, Print
tokens2, Schedule, Schedule2, Replace, Tcas, Tot info, and Sed)
and 15 large-scale Java programs with real faults (i.e., Chart, Cli,
Codec, Compress, Csv, Gson, JacksonCore, JacksonDatabind,
JacksonXml, Jsoup, JxPath, Lang, Math, Mockito, and Time).
All the C programs adopted in our empirical study can be ob-
tained from SIR,2 while Java programs can be downloaded from
the Defects4J GitHub repository.3 These programs have been
widely used in previous multiple fault localization studies [4],
[6], [16], [49], [56], which can alleviate the external threat of
our empirical results.

Table III gives the characteristics of the subject programs
used in our study. The first and second columns of Table III
present the program’s categories and name, respectively, and the
third column presents the number of multiple fault programs for
each subject program, where the multiple fault program versions
contain multiple faulty statements.

SIR provides the correct version of each subject program as
well as several faulty versions with seeded faults [28]. How-
ever, because SIR supplies only a limited number of faulty
versions (generally no more than ten versions per program),
we need to generate more faulty versions for our empirical
study. Specifically, we manually inject faulty statements into
correct programs to increase the amount of single-fault program
versions, and then randomly combine these faulty statements
from single-fault program versions to obtain sufficient multi-
ple fault program versions. This strategy of generating faulty
programs has been widely used in previous studies [16], [45],
[67], which can also alleviate the external threat of our empirical
study. Moreover, to show the generalization of our empirical
results, we also consider the Defects4j repository in our exper-
iments. Defects4J is an open-source Java program repository
that contains real-world defects. Martinez et al. [29] developed
Defects4J, which has been widely used to evaluate automated
fault localization and repair approaches. Defects4J is regarded as

2[Online]. Available: https://sir.csc.ncsu.edu/php/.
3[Online]. Available: https://github.com/rjust/defects4j.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

https://sir.csc.ncsu.edu/php/.
https://github.com/rjust/defects4j.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 11

TABLE III
CHARACTERISTICS OF SUBJECT PROGRAMS

the largest peer-reviewed well-organized structured database of
real Java defects. As a result, Defects4J programs have become
the primary assessment programs in the field of fault localization
in recent years. In total, we obtain 7528 multiple fault program
versions in our experimental study.

C. Coincidental Correct Test Case Elimination Strategies

To accurately reflect the influence of CC test cases and draw
conclusions for our research questions, we use labeled test cases
to simulate the CC test case identification process. Therefore, the
accuracy of the CC test case identification results presented in
our study can be guaranteed.

Following this, we eliminate all of the identified CC test
cases. Recent research has proposed a variety of strategies for
dealing with the identified CC test cases. For example, Miao et
al. [21] proposed two distinct strategies for manipulating CC test
cases: 1) Clean; and 2) Relabel. Specifically, the Clean strategy
removes identified CC test cases from the original test suite,
whereas the Relabel strategy changes the execution results of
the identified CC test cases from pass to fail.

When calculating the suspiciousness of Si via the Jaccard
formula presented in Table I, the Jaccard formula with two CC
dealing strategies: 1) Clean; and 2) Relabel, can be, respectively,
defined by the following:

SusClean(Si) =
fail(Si)

total fail + pass(Si)− cc(Si)
(5)

SusRelabel(Si) =
fail(Si) + cc(Si)

total fail + cc(Si) + pass(Si)− cc(Si)
(6)

where cc(Si) refers to the number of CC test cases that execute
the statement Si and cc refers to the total number of CC test
cases.

Due to the reduction process of CC test cases, the Clean
strategy is the most consistent technique with our theoretical
analysis. Therefore, we compare the fault localization results
based on the original test suite with the test suite after processing
with the Clean strategy in our empirical study.

D. Evaluation Metrics

We use the metrics EXAM and TOP-N to evaluate the ac-
curacy of fault localization. The details of these two evaluation
metrics are introduced as follows.

1) EXAM: EXAM has been commonly used to evaluate the
accuracy of fault localization [6], [68], which ranks the efforts of
locating the first faulty statement from the suspiciousness rank
list. A lower EXAM value means that fewer statements need to
be checked before localizing the real faulty statement, and the
corresponding fault localization approach is more accurate. The
EXAM value can be calculated as follows:

EXAM =
rank of the faulty statement

number of the executable statements
(7)

where the numerator is the rank of faulty statement in the suspi-
ciousness ranking list and the denominator is the total number
of executable statements that need to be checked. However,
when other existing statements share the same suspiciousness
value as the faulty statement, the numerator of EXAM cannot be
determined directly. To address this issue, recent research [16],
[68] has presented three approaches for calculating EXAM in
this situation. Let the faulty statement be Sa, the number of
statements with a higher suspiciousness value than Sa be A, and
the number of statements with the same suspiciousness value as
Sa be B. We can then calculate the value of EXAM as follows:

a) Best-Case Scenario: In this scenario, the developers can
find the faulty statements as fast as possible. This means
that the faulty statement can be located first within several
statements that share the same suspiciousness value. Then,
the value of EXAM is A+ 1.

b) Worst-Case Scenario: In this scenario, the developers will
find faulty statements as slowly as possible. This means
that the faulty statement will be finally located among sev-
eral statements that share the same suspiciousness value.
Then, the value of EXAM is A+B.

c) Average-Case Scenario: It is more likely in practice that
programmers will find faulty statements within a period of
time, which is somewhere between the best and worst case
scenario. Thus, it is better to report the average localization
effectiveness. Then, the value of EXAM is (A+1)+(A+B)

2 .
To simulate the real-world software debugging scenario, we

use the average-case scenario to calculate the EXAM value.
2) TOP-N: The metric TOP-N is also a widely used metric

in the field of fault localization [16], [22], [25], which indicates
the number of faulty statements that can be identified when less

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Fig. 7. Prevalence of coincidental correct test cases.

Fig. 8. Percentage of CC test cases generated by programs with differing
number of faulty statements. (a) SIR. (b) Defects4J.

than N statements are examined. The higher the TOP-N value,
the fewer statements developers must check when localizing
faults, which indicates that the corresponding fault localization
approach is more effective. Note that this metric is very impor-
tant in practice, since developers usually only inspect top-ranked
statements (e.g., over 70% of developers only check TOP-5
ranked statements [69]).

V. RESULT ANALYSIS

In this section, we analyze the results for each of our four
research questions and provide guidelines for potential future
studies.

A. RQ1: How Prevalent are CC Test Cases in Faulty
Programs?

Fig. 7 shows the percentage of our 7528 programs contains
CC test cases. In this figure, we can find that 6426 (i.e., 85.36%)
faulty programs contain CC test cases. In particular, 6262 (i.e.,
85.23%) of the 7347 faulty programs from SIR contain CC test
cases, while 164 (i.e., 90.61%) of the 181 faulty programs from
Defects4J contain CC test cases.

Based on the abovementioned statistical results, most multiple
fault programs contain CC test cases. Therefore, the existence
of CC test cases is clearly common in multiple fault programs.

Moreover, we analyze the correlation between the number
of CC test cases and the number of faulty statements. Our
analysis is performed by investigating the percentage of CC test
cases generated by programs with differing amounts of faulty
statements. The results are shown in Fig. 8.

The joint and marginal histograms plots are shown in Fig. 8,
where Fig. 8(a) shows the data from the SIR dataset, while
Fig. 8(b) shows the data from the Defects4J dataset. The hori-
zontal axis indicates the number of faulty statements contained
in the program, while the vertical axis indicates the proportion of
CC test cases generated by the program. The bars at the top and
right-hand side of each subfigures indicate the distribution of the
corresponding samples. For example, the height of the bars at the
top of Fig. 8(a) are basically the same, which indicates that the
number of programs containing different faulty statements in the
SIR dataset of this study are basically the same. Moreover, the
maximum value of the right-hand side bar in Fig. 8(a) is located
at a y-axis value, which is close to zero. This indicates that the
percentage of CC test cases generated by most faulty programs
in the SIR dataset is very close to zero. Finally, the color block
in the middle of each subfigure indicates the degree of sample
enrichment at the location corresponding to the horizontal and
vertical coordinates, and the darker the color, the higher the
number of samples at that location. Furthermore, the straight
line in Fig. 8 is the fitted regression line, which can show the
trend for the proportion of CC test cases, as the number of faulty
statements in the program increases.

As illustrated in Fig. 8(a) and (b), a large number of samples
are tightly grouped, which are close to the horizontal axis. This
indicates that regardless of the number of faulty statements in
programs, the CC test cases contained in the faulty programs
constitute a small fraction of the total test cases. According to
our data analysis, we can find that 3490 (i.e., 46.36%) of the
7528 multiple faulty programs result in less than 10% CC test
cases of all test cases. Meanwhile, according to the trend of the
regression line, we can find that the percentage of CC test cases
in the program tends to decrease slightly, as the number of faulty
statements in the program increases.

Answer to RQ1: The experimental results indicate that more
than 85% of multiple fault programs contain CC test cases
during the execution of their corresponding test suite, which
demonstrates that CC problems are widespread in multiple fault
programs. Moreover, regardless of the number of faulty state-
ments in programs, the percentage of contained CC test cases
is often between 0% and 20% of the whole test suite. Finally,
the percentage of CC test cases tends to decrease slightly, as the
number of faulty statements in the program increases.

B. RQ2: Can the Proposed CC Identification Approaches for
Single-Fault Programs Increase the Accuracy of Fault
Localization in Multiple Fault Programs?

To answer this RQ, we conduct the CC test case processing
strategy, proposed for single-fault programs, on all 7528 fault
programs. Specifically, we adopt the strategy of removing all
CC test cases, and then compare the fault localization accuracy
before and after removing these CC test cases.

Table IV gives the detailed experimental results. The first
column lists the various considered values of EXAM, and the
other columns are the percentages of faulty statements whose
EXAM is smaller than that of the corresponding EXAM value
when associated SBFL approaches are applied with different

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 13

TABLE IV
FAULT LOCALIZATION ACCURACY COMPARISON OF THE TRADITIONAL CLEAN STRATEGY IN TERMS OF EXAM METRIC

The bold font refers to positive results and italic font refers to negative results.

test cases and suspiciousness formulas. For example, for the
first row, its EXAM value is less than or equal to 1%. This
means that when considering the top 1% statements, 6.4% of
all faulty statements can be localized under SBFL using the
Ochiai formula and the original test suite. When cleaning all CC
test cases, the corresponding percentage is 5.8%. Obviously, for
each column, the higher the percentage is, the more accurate the
corresponding fault localization approach is.

In Table IV, we can find when only the top 1% of statements
are checked, employing the Clean strategy to remove all CC test
cases can result in a decrease of fault localization accuracy. This
indicates that after removing all CC test cases, the developers
can identify fewer faulty statements.

We highlight the differences only at the top of the Table IV,
with green (bold) denoting positive results and orange (italic)
denoting negative results. Because the results near the top (es-
pecially the 1%), according to a developer-oriented survey [69]
outlined in Section IV-D2, are more decisive. Especially, for
large-scale projects, such as Defeats4J, with over 10 000 lines
of code, where each 1% decrease can result in over 100 lines of
code, which do not needed to be checked.

To show the results in Table IV more visually, we use a plot
illustrated in Fig. 9 to examine the growth trend of Table IV.

In Fig. 9, x-axis denotes the value of the metric EXAM and y-
axis indicates the percentages of faulty statements whose EXAM
value is smaller than that of the corresponding EXAM value
under different test cases and repositories. A higher value of the
y-axis at the same x-axis position means better fault localization
accuracy. It should be noted that the formula used in Fig. 9 is
Jaccard, which can perform best before cleaning, as given in
Table IV.

In Fig. 9, we find, when all CC test cases are removed, the
amount of statements (especially the top 2%) checked by the
developers before localizing the faulty statement decreases. This
result is consistent with that in Table IV.

Fig. 9. Fault localization accuracy of using the traditional Clean strategy in
terms of EXAM metric.

Moreover, we employ the metric TOP-N to illustrate the
experimental results described in this section. The results are
presented in Table V, where each row corresponds to a unique
N value, which requires checking the corresponding number
of statements. Here, the better result for each row in Table V
is highlighted in green. Taking the results shown in the third
column of the third row as an example, we can find that when
checking the first statement in the suspiciousness ranking list
generated by the Ochiai formula, 339 of faults can be localized
in SIR programs.

In Table V, we can find that when all CC test cases are removed
via the Clean strategy, the value of TOP-1–TOP-10 becomes
significantly smaller, which means that the number of faulty
statements that can be found by detecting the same statement
becomes smaller (i.e., decreasing fault localization accuracy).

Answer to RQ2: The proposed strategy for handling CC test
cases tends to remove all CC test cases for single-fault programs.
However, our experimental results demonstrate that this strategy
is not applicable to multiple fault programs. When all CC test
cases are removed from the original test suite, the accuracy of
fault localization decreases.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

TABLE V
FAULT LOCALIZATION ACCURACY COMPARISON OF THE TRADITIONAL CLEAN STRATEGY IN TERMS OF THE METRIC TOP-N

The bold font refers to positive results and italic font refers to negative results.

TABLE VI
COMPARISON OF THE FAULT LOCALIZATION ACCURACY OF THE CLEAN STRATEGY ON THREE DIFFERENT TYPES OF CC TEST CASES IN TERMS OF THE METRIC

EXAM

The bold font refers to positive results and italic font refers to negative results.

C. RQ3: How Does SBFL Accuracy Change When Three
Categories of CC Test Cases are Removed in Multiple Fault
Programs?

To verify the correctness of the theoretical analysis in Sec-
tion III, we perform the Clean strategy of three types of CC
test cases on all programs and observe the accuracy of fault
localization.

Note that in each program, the faulty statement, which has the
highest suspiciousness in the original circumstance, is used as
the target faulty statement Sa for the purpose of identifying and
removing the three types of CC test cases in this experiment. Ta-
ble VI gives the experimental findings. The first column contains
the various values considered for EXAM. The second and third
columns show the corresponding results when the original test
suite is used for fault localization; and the fourth–fifth/sixth–
seventh/eighth–ninth columns contain the average value after
removing the corresponding specific/irrelevant/unspecific test
cases of the target faulty statement Sa in each program.

As given in Table VI, we find the experimental results are
consistent with the conclusions of our theoretical analysis.
Specifically, from the fourth and fifth columns, we find that the

number of localized faulty statements increases when checking
statements after removing the specific CC test cases, while
the value of number of localized faulty statements decreases
after removing the irrelevant CC test cases. When removing
the unspecific CC test case, the fault localization accuracy also
changes for the better in general, which is also consistent with
one of the conclusions in our theoretical analysis.

In Table VII, we give the results of employing the TOP-N
metric to assess the effect of removing three categories of CC
test cases. Each row in Table VII is highlighted in green for
positive results when compared to the original test suite and in
red for negative results. We can observe that the value of TOP-5
increases after removing the specific or unspecific CC test cases,
while the value of TOP-5 decreases after removing the irrelevant
CC test cases.

Answer to RQ3: Our empirical results verify the correctness
of our theoretical analysis. Specifically, for any faulty statement
in a multiple fault program, removing specific CC test cases can
help to improve the fault localization accuracy, while removing
irrelevant CC test cases has the negative influence.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 15

TABLE VII
FAULT LOCALIZATION ACCURACY COMPARISON OF THE CLEAN STRATEGY ON

THREE DIFFERENT TYPES OF CC TEST CASES IN TERMS OF THE METRIC

TOP-N

The bold font refers to positive results and italic font refers to negative results.

D. RQ4: How Do CC Test Cases Affect SBFL Accuracy When
Employing Isolation-Based Fault Localization Approaches in
Multiple Fault Programs?

Although removing specific CC test cases can improve fault
localization accuracy for any faulty statement in a multiple
fault program, previous CC test case identification approaches
do not directly identify specific CC test cases for a specific
faulty statement in a multiple fault program. As described in
Section II-C, most of the existing CC test case identification
approaches are based on the assumption that CC test cases are
more similar to failed test cases, which holds in for single-fault
programs because each CC test case in the single-fault program
must execute the same faulty statement, and thus, these CC test
cases will achieve a similar characteristic to the failed test cases
that also execute the faulty statement. However, this assumption
does not hold in the multiple fault scenarios because different CC
test cases may execute different faulty statements in the multiple
fault program. For example, if a CC test case does not execute
the faulty statement Sa, its characteristic may not be similar to
the failed test case that executes the statement Sa. Therefore,
in the multiple fault program, a CC test case identified via the
CC identification approach proposed for single-fault programs
cannot determine that which of the faulty statements in the
program is executed, thus, it is not possible to know that which
type of CC test case (i.e., specific, irrelevant, or unspecific) has
been identified.

However, the isolation-based multiple fault localization ap-
proaches provide a solution to this problem. As described in
Section II-B, the isolation-based multiple fault localization ap-
proaches divide all the failed test cases into multiple clusters.
Ideally, the failed test cases within each cluster are caused by a
single faulty statement [70]. That is, in a multiple fault program
containing the faulty statement Sa, if all test cases in a cluster
execute the statement Sa, it is more likely that the CC test cases
determined by the failed test cases in that cluster also execute
the statement Sa. According to the experimental results of RQ3,
removing this kind of test case can improve the fault localization
accuracy of the statement Sa. Repeating the abovementioned
steps for all clusters obtained by the isolation-based multiple

TABLE VIII
FAULT LOCALIZATION ACCURACY COMPARISON OF THE CC TEST CASE CLEAN

STRATEGY UNDER ISOLATION-BASED FAULT LOCALIZATION IN TERMS OF THE

METRIC EXAM

The bold font refers to positive results and italic font refers to negative results.

fault localization approach; we can ideally improve the local-
ization accuracy of all faulty statements.

To verify the effectiveness of this conjecture, we simulate
the process of dividing the failed test cases of the programs
under test, where the failed test cases within each class cluster
are caused by a single faulty statement. Then, for each cluster,
we consider all the passed test cases along with the failed
test cases within this cluster. This is the process of original
isolation-based multiple fault localization, which served as the
control group for this experiment. Next, we remove the CC test
cases that execute the corresponding faulty statements of each
cluster, and use the passed test cases after removing CC test
cases for fault localization together with the failed test cases in
the corresponding cluster, and these results of fault localization
were used as the experimental group. The final results are given
in Table VIII. In this table, the second/fourth columns give the
results only after isolation, and the third/fifth columns give the
results after isolation and cleaning CC test cases that execute the
corresponding faulty statements of each cluster.

As given in the second and fourth columns of Table VIII,
developers may discover more faulty statements after isolation
when only checking the first few statements, in comparison to
the original condition described in Table VI. Moreover, as found
by the third and fifth columns of Table VIII, the accuracy of
fault localization can be further improved significantly after the
relevant CC test cases were removed. Similarly, to evaluate the
effect on high-accuracy fault localization results, Table IX gives
the results of this experiment in terms of the metric TOP-N .

As given in Table IX, the TOP-5 values in the fourth column
are all larger than those in the third column, which indicates that
the accuracy of fault localization may be significantly improved
by applying the isolation-based multiple fault localization ap-
proach. Moreover, the values in the fifth column are all larger
than the values in the fourth column, which indicates that the

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

TABLE IX
FAULT LOCALIZATION ACCURACY COMPARISON OF THE CC TEST CASE CLEAN

STRATEGY UNDER ISOLATION-BASED FAULT LOCALIZATION IN TERMS OF

TOP-N METRIC

The bold font refers to positive results and italic font refers to negative results.

accuracy of fault localization can be further improved by ap-
plying both the Clean strategy and the isolation-based multiple
fault localization approach.

Answer to RQ4: Our experimental results show that using both
the isolation-based multiple fault localization approach and the
Clean strategy, to remove all CC test cases that executed the
faulty statement associated with the cluster, can ideally improve
fault localization accuracy.

E. Practical Guidelines

In this section, we provide practical guidelines for future
studies. Specifically, if we want to improve the fault localization
accuracy of a specific faulty statement of multiple fault programs
the following hold.

1) We should avoid removing irrelevant CC test cases as-
sociated with this faulty statement, since our theoretical
analysis shows that reducing irrelevant CC test cases may
have a negative effect on the accuracy of fault localiza-
tion for the corresponding faulty statement. Furthermore,
the results in RQ3 verify our conclusions by theoretical
analysis. When irrelevant CC test cases associated with
each faulty statement are removed, the accuracy of fault
localization for both artificial and real faults in SIR and
Defects4J decreases.

2) We should consider combining the isolation-based mul-
tiple fault localization approach and the traditional CC
test case identification strategy to solve the CC problem
in multiple fault programs, as the traditional CC test
case identification assumptions proposed for single-fault
programs do not hold for multiple fault programs.

Therefore, in RQ4, we propose a new CC test case identifi-
cation and processing strategy based on the existing isolation-
based multiple fault localization approach. The simulation re-
sults demonstrate that our strategy can effectively increase fault
localization accuracy.

VI. DISCUSSIONS

A. Experiments in Function-Level Fault Localization

Existing studies suggest that fault localization at the state-
ment level might not be an optimal technique [71], partic-
ularly for programs in the Defects4J repository. Due to the
small number of test cases and sparse coverage paths in the
Defects4J repository, previous investigations have usually used
function-level fault localization [72], [73]. As a result, we repli-
cate our experiments at the function level for the Defects4J
repository.

Tables X and XI summarize the results of Jaccard’s (i.e., best
formula in our experiment) fault localization at the function
level. Since a single faulty function may include several faulty
statements, the number of multiple fault programs at the function
level is reduced somewhat in comparison to the statement level.
After filtering out single-fault versions, the total number of faulty
versions with multiple functions is 93, which contains 323 faulty
functions.

The experimental results in this section are given in Table X
in terms of the metric EXAM, which is consistent with our
conclusion in RQ. Specifically, when checking a few func-
tions toward the top of the suspiciousness ranking list, the
number of localized faulty functions increases when all spe-
cific CC test cases are removed, but decreases when all irrele-
vant CC test cases are removed. Besides, as compared to the
original situation, the isolation-based multiple fault localiza-
tion approach can improve the accuracy of fault localization
while checking a small number of functions, and the CC test
case cleaning strategy on this basis can further enhance this
advantage.

Following this, as given in Table XI, the result in terms of the
metric TOP-N is also consistent with the preceding statement-
level experiments in the majority of cases. That is, removing the
specific and unspecific CC test cases can significantly improve
the results of high-accuracy fault localization compared to the
original situation. The isolation-based multiple fault localiza-
tion approach can also effectively improve fault localization
accuracy. In addition, in most cases, removing relevant CC
test cases on the basis of the isolation-based multiple fault
localization approach improves fault localization accuracy even
further.

However, the results in Table XI are inconsistent with those
in Tables VII or IX. For instance, removing the irrelevant CC
test case can lead to an increase in terms of TOP-3, or a
decrease in terms of TOP-3 and TOP-5 after the application
of the isolation-based fault localization approach. Based on our
analysis, the problem arises because test case coverage infor-
mation is insufficient, and the coverage paths of the failed test
cases are frequently identical at the function level, which makes
it difficult to distinguish the correct functions from the faulty
functions, eventually causing more correct functions to have the
same suspiciousness value as the faulty function. In other words,
this does not mean that the faulty function’s suspiciousness
value lowers, but that the suspiciousness value of more correct
functions elevates to the same level as the faulty function, which
makes the faulty function more difficult to detect.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 17

TABLE X
COMPARISON OF THE FAULT LOCALIZATION ACCURACY OF THE CLEAN STRATEGY IN TERMS OF THE METRIC EXAM IN DEFECTS4J REPOSITORY

The bold font refers to positive results and italic font refers to negative results.

TABLE XI
COMPARISON OF THE FAULT LOCALIZATION ACCURACY OF THE CLEAN STRATEGY IN TERMS OF THE METRIC TOP-N FOR DEFECTS4J REPOSITORY

The bold font refers to positive results and italic font refers to negative results.

However, we recommend that researchers can follow the
guidelines provided in Section V-E. After all, there is still a
potential risk that removing irrelevant CC test cases may result
in a decrease in fault localization accuracy, which is not observed
when removing specified and unspecific CC test cases. More-
over, adopting an isolation-based approach to fault localization
and removing CC test cases can achieve positive results for
high-accuracy fault localization (i.e., in terms of TOP-1).

B. Experiments in the Relabel Strategy

According to existing research, another popular strategy
for dealing with CC test cases is the Relabel strategy [21].
As mentioned in Section IV-C, the Relabel strategy changes the
result of detected CC test cases from pass to fail after execution.
In recent studies regarding CC test cases, several approaches
deal with the CC test cases that involve the use of relabeling [24],
[56]. Therefore, we employ the Relabel strategy once more to
verify the validity of our empirical observations.

Table XII summarizes experimental results in terms of the
metric TOP-N , where N is set to 5, which is consistent with the
setting in Section IV-D2. As given in Table XII, the experimental

results by using the Relabel strategy are consistent with the
experimental results by using the Clean strategy. Specifically,
removing the specific and unspecific CC test cases increases
the accuracy of fault localization in comparison to the original
case, whereas removing the irrelevant CC test cases decreases
the accuracy of fault localization. The last column of Table XII
demonstrates that employing the Relabel strategy for CC test
cases on the basis of the isolation-based multiple fault localiza-
tion approach can further increase fault localization accuracy.

Therefore, the conclusions and practical guidelines proposed
in our study still hold when the CC test case processing strategy
is changed from the Clean strategy to the Relabel strategy.

VII. THREATS TO VALIDITY

In this section, we discuss the potential threats to our study.

A. Internal Validity

The main internal threat in our study is the derivation part of
our theoretical research via the Jaccard formula. To alleviate this
threat, we also used the Dstar formula and the Ochiai formula for

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON RELIABILITY

TABLE XII
FAULT LOCALIZATION ACCURACY COMPARISON OF THE RELABEL STRATEGY IN TERMS OF THE METRIC TOP-N

The bold font refers to positive results and italic font refers to negative results.

theoretical derivation to verify its effectiveness. In the current
field of fault localization, Jaccard, Dstar, and Ochiai are among
the most commonly used formulas [35]–[37]. In the future, we
propose to use other fault localization formulas, such as Op2
and Tarantula, [25], [41] to further verify the effectiveness of
our theoretical research.

B. External Validity

The external threat is related to the scale of our experiment
and the representativeness of our experimental subjects. To
alleviate this threat, we used 7374 faulty versions, 22 975 test
cases, and 43 992 faults in multiple faults from the SIR; 181
faulty versions, 17 983 test cases, and 971 faults in multiple
faults from the Defects4J repository. It is worth mentioning that
the SIR and the Defects4J repository have been widely used
in previous fault localization studies [4], [6], [16], [49], [56].
Therefore, the quality of the programs from these repositories
can be guaranteed.

C. Construct Validity

Threats to construct validity include how well we measure
our experimental results. To alleviate this threat, we used the
metrics EXAM and TOP-N to evaluate the performance of our
approach. These metrics have been widely used in evaluating
the performance of multiple fault localization and CC test cases
study [6], [16], [22], [25], [68]. In future work, we intend to use
additional metrics to analyze the experimental results.

VIII. CONCLUSION

In this article, we conducted a theoretical analysis on the im-
pact of CC test cases in multiple fault localization, and performed
an empirical study to verify the correctness of the theoretical
analysis. In particular, after theoretical analysis, we found that
for each faulty statement in a multiple fault program, removing
specific CC test cases helps to improve the fault localization
accuracy, while removing irrelevant CC test cases has a nega-
tive effect. To verify the theoretical analysis, we conducted an
empirical study on two large-scale open-source corpora SIR and
Defects4J. Final experimental results verified the validity of our
theoretical analysis.

In our empirical study, we found that more than 85% of
multiple fault programs contained CC test cases during the
execution of their associated test suite, and the percentage of
CC test cases in the test suites was often between 0% and 20%.
Moreover, our experimental results demonstrated that the tradi-
tional CC handling strategy proposed for single-fault programs
is not applicable to multiple fault programs, since it results
in lower accuracy for multiple fault localization. Furthermore,
we proposed CC test cases identification solution based on
the isolation-based multiple fault localization approach, which
was inspired by existing multiple fault localization approaches.
Specifically, using the isolation-based multiple fault localization
approach in combination with the Clean strategy to remove all
CC test cases that executed the faulty statement associated with
the cluster can improve fault localization accuracy.

In the future, we first plan to conduct more formula derivations
to verify the correctness of our theoretical analysis. Then, we
aim to larger scale programs to verify the generalization of our
empirical results. Finally, based on our findings, we also aim
to design more practical CC test case identification approaches
for multiple fault programs to increase the accuracy of multiple
fault localization.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their insightful comments and suggestions, which can substan-
tially improve the quality of this article.

REFERENCES

[1] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using mutation
analysis for assessing and comparing testing coverage criteria,” IEEE
Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, Aug. 2006.

[2] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proc. 20th IEEE/ACM Int. Conf.
Automated Softw. Eng., 2005, pp. 273–282.

[3] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for
statistical fault localization,” in Proc. 19th Int. Symp. Softw. Testing Anal.,
2010, pp. 73–84.

[4] Y. Liu, Z. Li, R. Zhao, and P. Gong, “An optimal mutation execution
strategy for cost reduction of mutation-based fault localization,” Inf. Sci.,
vol. 422, pp. 572–596, 2018.

[5] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. van Gemund, “A practical
evaluation of spectrum-based fault localization,” J. Syst. Softw., vol. 82,
no. 11, pp. 1780–1792, 2009.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 19

[6] J. A. Jones, J. F. Bowring, and M. J. Harrold, “Debugging in parallel,” in
Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 16–26.

[7] A. Bandyopadhyay, “Mitigating the effect of coincidental correctness in
spectrum based fault localization,” in Proc. IEEE 5th Int. Conf. Softw.
Testing, Verification Validation, 2012, pp. 479–482.

[8] K. Lin, L. Xu, and J. Wu, “A fast fuzzy C-means clustering for color image
segmentation,” J. Image Graph., vol. 9, no. 2, pp. 159–163, 2004.

[9] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “Spectrum-based multiple
fault localization,” in Proc. IEEE/ACM Int. Conf. Automated Softw. Eng.,
2009, pp. 88–99.

[10] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software
fault localization,” IEEE Trans. Softw. Eng., vol. 42, no. 8, pp. 707–740,
Aug. 2016.

[11] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An
empirical study,” J. Syst. Softw., vol. 31, no. 3, pp. 185–196, 1995.

[12] W. E. Wong, V. Debroy, and B. Choi, “A family of code coverage-based
heuristics for effective fault localization,” J. Syst. Softw., vol. 83, no. 2,
pp. 188–208, 2010.

[13] Y. Zheng, Z. Wang, X. Fan, X. Chen, and Z. Yang, “Localizing multiple
software faults based on evolution algorithm,” J. Syst. Softw., vol. 139,
pp. 107–123, 2018.

[14] W. Masri and R. A. Assi, “Prevalence of coincidental correctness and
mitigation of its impact on fault localization,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 1, pp. 1–28, 2014.

[15] M. Weiser, “Programmers use slices when debugging,” Commun. ACM,
vol. 25, no. 7, pp. 446–452, 1982.

[16] R. Gao and W. E. Wong, “MSeer– An advanced technique for locating mul-
tiple bugs in parallel,” IEEE Trans. Softw. Eng., vol. 45, no. 3, pp. 301–318,
Mar. 2019.

[17] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, and R. A. Rasheed, “Multiple
fault localization of software programs: A systematic literature review,”
Inf. Softw. Technol., vol. 124, 2020, Art. no. 106312.

[18] Y. Li and C. Liu, “Using cluster analysis to identify coincidental correct-
ness in fault localization,” in Proc. 4th Int. Conf. Comput. Inf. Sci., 2012,
pp. 357–360.

[19] L. Weishi and X. Mao, “Alleviating the impact of coincidental correctness
on the effectiveness of SFL by clustering test cases,” in Proc. Theor. Aspects
Softw. Eng. Conf., 2014, pp. 66–69.

[20] X. Xue, Y. Pang, and A. S. Namin, “Trimming test suites with coinciden-
tally correct test cases for enhancing fault localizations,” in Proc. IEEE
38th Annu. Comput. Softw. Appl. Conf., 2014, pp. 239–244.

[21] Y. Miao, Z. Chen, S. Li, Z. Zhao, and Y. Zhou, “Identifying coincidental
correctness for fault localization by clustering test cases,” in Proc. Int.
Conf. Softw. Eng. Knowl. Eng., 2012, pp. 267–272.

[22] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause: Localizing
errors in counterexample traces,” in Proc. 30th ACM SIGPLAN-SIGACT
Symp. Princ. Program. Lang., 2003, pp. 97–105.

[23] W. Masri and R. A. Assi, “Cleansing test suites from coincidental correct-
ness to enhance fault-localization,” in Proc. 3rd Int. Conf. Softw. Testing,
Verification Validation, 2010, pp. 165–174.

[24] A. Bandyopadhyay and S. Ghosh, “Proximity based weighting of test cases
to improve spectrum based fault localization,” in Proc. 26th IEEE/ACM
Int. Conf. Automated Softw. Eng., 2011, pp. 420–423.

[25] X. Wang, S. C. Cheung, W. K. Chan, and Z. Zhang, “Taming coinci-
dental correctness: Coverage refinement with context patterns to improve
fault localization,” in Proc. IEEE 31st Int. Conf. Softw. Eng., 2009,
pp. 45–55.

[26] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi, “An empirical
study of the factors that reduce the effectiveness of coverage-based fault
localization,” in Proc. 2nd Int. Workshop Defects Large Softw. Syst., ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2009, pp. 1–5.

[27] R. Gopinath, C. Jensen, and A. Groce, “The theory of composite faults,” in
Proc. IEEE Int. Conf. Softw. Testing, Verification Validation, 2017, pp. 47–
57.

[28] D. O. Hyunsook, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its potential
impact,” Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, 2005.

[29] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in Java: A large-scale experiment on the
Defects4j dataset,” Empirical Softw. Eng., vol. 22, no. 4, pp. 1936–1964,
2017.

[30] Z. Li, H. Wang, and Y. Liu, “HMER: A hybrid mutation execution
reduction approach for mutation-based fault localization,” J. Syst. Softw.,
vol. 168, 2020, Art. no. 110661.

[31] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? More ac-
curate information retrieval-based bug localization based on bug reports,”
in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 14–24.

[32] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug local-
ization using structured information retrieval,” in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng., 2013, pp. 345–355.

[33] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of IR-based
fault localization techniques,” in Proc. Int. Symp. Softw. Testing Anal.,
2015, pp. 1–11.

[34] A. Zakari et al., “Spectrum-based fault localization techniques application
on multiple-fault programs: A review,” Glob. J. Comput. Sci. Technol.,
vol. 20, pp. 41–48, 2020.

[35] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull. Soc. Vaudoise Sci. Nat., vol. 37, pp. 547–579,
1901.

[36] R. Abreu, P. Zoeteweij, and A. J. van Gemund, “An evaluation of similarity
coefficients for software fault localization,” in Proc. 12th Pacific Rim Int.
Symp. Dependable Comput., 2006, pp. 39–46.

[37] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for effective
software fault localization,” IEEE Trans. Rel., vol. 63, no. 1, pp. 290–308,
Mar. 2014.

[38] F. Wotawa and M. Nica, “Program debugging using constraints-is it
feasible?,” in Proc. 11th Int. Conf. Qual. Softw., 2011, pp. 236–243.

[39] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an RBF neural network
to locate program bugs,” in Proc. 19th Int. Symp. Softw. Rel. Eng., 2008,
pp. 27–36.

[40] N. DiGiuseppe and J. A. Jones, “On the influence of multiple faults on
coverage-based fault localization,” in Proc. Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 210–220.

[41] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-based
software diagnosis,” ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3,
pp. 1–32, 2011.

[42] Z. Li, Y. Wu, H. Wang, X. Chen, and Y. Liu, “Review of software multiple
fault localization approaches,” Chin. J. Comput., pp. 1–33, 2021. [Online].
Available: http://cjc.ict.ac.cn/online/bfpub/lz-2021525102358.pdf

[43] C. Artho, “Iterative delta debugging,” Int. J. Softw. Tools Technol. Transfer,
vol. 13, no. 3, pp. 223–246, 2011.

[44] H.-L. Cao and S.-J. Jiang, “Multiple-fault localization based on chameleon
clustering,” Tien Tzu Hsueh Pao/Acta Electronica Sinica, vol. 45, no. 2,
pp. 394–400, 2017.

[45] S.-M. Lamraoui and S. Nakajima, “A formula-based approach for auto-
matic fault localization of multi-fault programs,” J. Inf. Process., vol. 24,
no. 1, pp. 88–98, 2016.

[46] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proc. 24th Int. Conf. Softw. Eng., 2002,
pp. 467–477.

[47] Y. Wu, Z. Li, Y. Liu, and X. Chen, “FATOC: Bug isolation based multi-fault
localization by using optics clustering,” J. Comput. Sci. Technol., vol. 35,
no. 5, pp. 979–998, 2020.

[48] B. Liu, Lucia, S. Nejati, L. Briand, and T. Bruckmann, “Localizing multiple
faults in simulink models,” in Proc. IEEE 23rd Int. Conf. Softw. Anal.,
Evol., Reengineering, 2016, pp. 146–156.

[49] Y. Huang, J. Wu, Y. Feng, Z. Chen, and Z. Zhao, “An empirical study on
clustering for isolating bugs in fault localization,” in Proc. IEEE Int. Symp.
Softw. Rel. Eng. Workshops, 2013, pp. 138–143.

[50] Z. Wei and B. Han, “Multiple-bug oriented fault localization: A parameter-
based combination approach,” in Proc. IEEE 7th Int. Conf. Softw. Secur.
Rel. Companion, 2013, pp. 125–130.

[51] T. A. Budd and D. Angluin, “Two notions of correctness and their relation
to testing,” Acta Informatica, vol. 18, no. 1, pp. 31–45, 1982.

[52] W. Masri and A. Podgurski, “An empirical study of the strength of
information flows in programs,” in Proc. Int. Workshop Dyn. Syst. Anal.,
2006, pp. 73–80.

[53] J. Kim, J. Kim, and E. Lee, “VFL: Variable-based fault localization,” Inf.
Softw. Technol., vol. 107, pp. 179–191, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584918302453

[54] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thuraisingham,
“Effective software fault localization using an RBF neural network,” IEEE
Trans. Rel., vol. 61, no. 1, pp. 149–169, Mar. 2012.

[55] B. Hofer, “Removing coincidental correctness in spectrum-based fault
localization for circuit and spreadsheet debugging,” in Proc. IEEE Int.
Symp. Softw. Rel. Eng. Workshops, 2017, pp. 199–206.

[56] Y. Liu, M. Li, Y. Wu, and Z. Li, “A weighted fuzzy classification ap-
proach to identify and manipulate coincidental correct test cases for fault
localization,” J. Syst. Softw., vol. 151, pp. 20–37, 2019.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

http://cjc.ict.ac.cn/online/bfpub/lz-2021525102358.pdf
https://www.sciencedirect.com/science/article/pii/S0950584918302453
https://www.sciencedirect.com/science/article/pii/S0950584918302453

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON RELIABILITY

[57] R. A. Assi, W. Masri, and C. Trad, “Substate profiling for enhanced fault
detection and localization: An empirical study,” in Proc. IEEE 13th Int.
Conf. Softw. Testing, Validation Verification, 2020, pp. 16–27.

[58] A. Sabbaghi, M. R. Keyvanpour, and S. Parsa, “FCCI: A fuzzy expert sys-
tem for identifying coincidental correct test cases,” J. Syst. Softw., vol. 168,
2020, Art. no. 110635. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0164121220301102

[59] R. A. Assi, W. Masri, and C. Trad, “How detrimental is coincidental cor-
rectness to coverage-based fault detection and localization? An empirical
study,” Softw. Testing, Verification Rel., vol. 31, no. 5, 2021, Art. no. e1762.

[60] V. Debroy and W. E. Wong, “Insights on fault interference for programs
with multiple bugs,” in Proc. 20th Int. Symp. Softw. Rel. Eng., 2009,
pp. 165–174.

[61] N. DiGiuseppe and J. A. Jones, “Fault interaction and its repercussions,”
in Proc. 27th IEEE Int. Conf. Softw. Maintenance, 2011, pp. 3–12.

[62] J. Li, X. Yan, B. Liu, and S. Wang, “An insight of double-faults interactions
in program: An empirical study,” in Proc. 2nd Int. Conf. Rel. Syst. Eng.,
2017, pp. 1–6.

[63] N. DiGiuseppe and J. A. Jones, “Software behavior and failure clustering:
An empirical study of fault causality,” in Proc. IEEE 5th Int. Conf. Softw.
Testing, Verification Validation, 2012, pp. 191–200.

[64] X. Xue and A. S. Namin, “How significant is the effect of fault interactions
on coverage-based fault localizations?,” in Proc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas., 2013, pp. 113–122.

[65] L. Zhang, L. Yan, Z. Zhang, J. Zhang, W. Chan, and Z. Zheng, “A theoreti-
cal analysis on cloning the failed test cases to improve spectrum-based fault
localization,” J. Syst. Softw., vol. 129, pp. 35–57, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121217300808

[66] K. H. T. Wah, “A theoretical study of fault coupling,” Softw. Testing,
Verification Rel., vol. 10, no. 1, pp. 3–45, 2000.

[67] Z. Yu, C. Bai, and K.-Y. Cai, “Does the failing test execute a single
or multiple faults? An approach to classifying failing tests,” in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., 2015, pp. 924–935.

[68] C. Liu, X. Zhang, and J. Han, “A systematic study of failure proximity,”
IEEE Trans. Softw. Eng., vol. 34, no. 6, pp. 826–843, Nov./Dec. 2008.

[69] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proc. 25th Int. Symp. Softw. Testing Anal.,
2016, pp. 165–176.

[70] Z. Li, Y. Wu, and Y. Liu, “An empirical study of bug isolation on the
effectiveness of multiple fault localization,” in Proc. IEEE 19th Int. Conf.
Softw. Qual., Rel. Secur., 2019, pp. 18–25.

[71] Y. Kim, S. Mun, S. Yoo, and M. Kim, “Precise learn-to-rank fault local-
ization using dynamic and static features of target programs,” ACM Trans.
Softw. Eng. Methodol., vol. 28, no. 4, pp. 1–34, 2019.

[72] M. Zhang, X. Li, L. Zhang, and S. Khurshid, “Boosting spectrum-based
fault localization using pagerank,” in Proc. 26th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2017, pp. 261–272.

[73] X. Li, W. Li, Y. Zhang, and L. Zhang, “DeepFL: Integrating multiple
fault diagnosis dimensions for deep fault localization,” in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 169–180.

Yonghao Wu received the B.S. degree in computer
science and technology from Nanchang Hangkong
University, Nanchang, China, in 2017, and the M.S.
degree in the computer science and technology in
2020 from the Beijing University of Chemical Tech-
nology, Beijing, China, where he is currently working
toward the Ph.D. degree in control science and engi-
neering.

His research interests include fault localization and
software testing.

Yong Liu (Member, IEEE) received the B.Sc. and
M.Sc. degrees in computer science and technology
and the Ph.D. degree in control science and engi-
neering from the Beijing University of Chemical
Technology, Beijing, China, in 2008, 2011, and 2018,
respectively.

He is currently an Assistant Professor with the Col-
lege of Information Science and Technology, Beijing
University of Chemical Technology. He has authored
or coauthored more than ten papers in referred jour-
nals or conferences, such as the Journal of Systems

and Software, the Information Sciences, the IEEE INTERNATIONAL CONFER-
ENCE ON SOFTWARE QUALITY, RELIABILITY AND SECURITY, the International
Conference on Software Analysis, Testing and Evolution (SATE), and the
International Computer Software and Applications Conference. His research
focuses on software engineering, including software debugging and software
testing, such as source code analysis, mutation testing, and fault localization.

Dr. Liu is a Member of the China Computer Federation and the Association
for Computing Machinery.

Weibo Wang received the B.S. degree in computer
science and technology from Tiangong University,
Tianjin, China, in 2019. He is currently working
toward the master’s degree in software engineering
with the Beijing University of Chemical Technology,
Beijing, China.

His research interests include fault localization and
software testing.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

https://www.sciencedirect.com/science/article/pii/S0164121220301102
https://www.sciencedirect.com/science/article/pii/S0164121220301102
https://www.sciencedirect.com/science/article/pii/S0164121217300808

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: THEORETICAL ANALYSIS AND EMPIRICAL STUDY ON THE IMPACT OF COINCIDENTAL CORRECT TEST CASES 21

Zheng Li received the B.Sc. degree in the computer
science and technology from the Beijing University
of Chemical Technology, Beijing, China, in 1996, and
the Ph.D. degree in computer science from CREST
Centre, King’s College London, London, U.K., in
2009.

He is currently a Professor with the College of
Information Science and Technology, Beijing Uni-
versity of Chemical Technology. He was a Research
Associate with King’s College London and Univer-
sity College London, London. He has authored or

coauthored more than 60 papers in referred journals or conferences, such as the
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, the International Confer-
ence on Software Engineering, the Journal of Software: Evolution and Process,
the Information and Software Technology, the Journal of Systems and Software,
the International Conference on Software Maintenance, the IEEE International
Conference on Software Maintenance and Evolution, the International Computer
Software and Applications Conference, the IEEE International Working Con-
ference on Source Code Analysis and Manipulation, and the IEEE International
Conference on Software Quality, Reliability and Security. His research focuses
on software engineering, including program testing, source code analysis, and
manipulation.

Xiang Chen (Member, IEEE) received the B.Sc.
degree in information management and system from
the School of Management, Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2002, and the M.Sc. and Ph.D.
degrees in computer software and theory from Nan-
jing University, Nanjing, China, in 2008 and 2011,
respectively.

He is currently an Associate Professor with the
Department of Information Science and Technology,
Nantong University, Nantong, China. He has authored
or coauthored more than 60 papers in referred journals

or conferences, such as the IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,
the Information and Software Technology, the Journal of Systems and Software,
the IEEE TRANSACTIONS ON RELIABILITY, the Journal of Software: Evolution
and Process, the Software Quality Journal, the Journal of Computer Science
and Technology, the International Conference on Software Engineering, the
IEEE/ACM International Conference Automated Software Engineering, the
IEEE International Conference on Software Maintenance and Evolution, the
IEEE International Conference on Software Analysis, Evolution and Reengi-
neering, and the International Computer Software and Applications Conference.
His research focuses on software engineering, including software maintenance
and software testing, such as software defect prediction, combinatorial testing,
regression testing, and fault localization.

Dr. Chen is a Senior Member of the China Computer Federation and a Member
of the Association for Computing Machinery.

Paul Doyle received the Ph.D. degree in astronomical
distributed data processing from the Dublin Institute
of Technology, Dublin, Ireland, in 2015.

He is currently the Head of the School of Computer
Science, Technological University Dublin, Dublin,
Ireland. For more than 20 years, he was with industry
in Silicon Valley, CA, USA, and in Dublin. He was
a Product and Quality Director of CR2, a banking
software company, Dublin. He was a Senior Manager
with Sun Microsystems, Menlo Park, CA. He was
a Senior Developer with BlueStar Financial Invest-

ment. His research interests include Big Data processing of astronomical images,
distributed systems, systems infrastructure, and educational pedagogy.

Authorized licensed use limited to: Beijing University of Chemical Technology. Downloaded on May 10,2022 at 04:40:52 UTC from IEEE Xplore. Restrictions apply.

