ZHEN-GANG WANG头像

ZHEN-GANG WANG

Professor

Research direction: Biomimetic Catalysis

Education:

10 Access

  • Email: wangzg@buct.edu.cn
  • Office :

Introduction

Zhen-Gang Wang, Professor and Ph.D. supervisor at the School of Materials Science and Engineering, Beijing University of Chemical Technology. He obtained his bachelor's degree from Dalian University of Technology in 2003 and his Ph.D. from the Department of Polymer Science and Engineering at Zhejiang University in 2008. He then pursued postdoctoral research at the Hebrew University of Jerusalem, Israel. In May 2011, he joined the National Center for Nanoscience and Technology as an associate researcher and was later appointed as a distinguished researcher. In January 2019, he joined Beijing University of Chemical Technology as a high-level talent. He was selected as a member of the Youth Innovation Promotion Association of the Chinese Academy of Sciences and received awards such as the Lu Jiaxi Young Talent Award of the Chinese Academy of Sciences and the Second Prize of the Ministry of Education's Natural Science Award. He was also recognized as a senior member of the Chinese Chemical Society. He has published nearly 60 papers as the corresponding or first author in academic journals such as Nature Materials and Nature Communications, holds five authorized Chinese invention patents, and has led several projects, including those funded by the National Natural Science Foundation of China, the Beijing Natural Science Foundation, and talent funding from the Chinese Academy of Sciences. He has given invited talks at numerous domestic and international academic conferences.


Education

Work Experience

Social Position

Social Activities

Research

Enzymes exhibit remarkable catalytic activity and selectivity under mild conditions, making them potential substitutes for traditional heavy metal catalysts in chemical production, promoting sustainable development through green and energy-efficient processes. However, natural enzymes face several limitations, such as structural instability, difficulty in recovery and reuse, poor stereoselectivity, and uncontrollable sources, which hinder their practical application. As a result, chemical design and regulation of enzymes have attracted considerable attention. Natural enzymes achieve their catalytic functions by arranging specific functional groups in a three-dimensional folded structure of protein chains to form active sites, and they recognize and transform substrates through non-covalent interactions. This characteristic has inspired efforts to mimic enzyme-catalyzed microenvironments using molecular self-assembly to construct catalytic systems with enzyme-like activities. Nevertheless, precisely controlling molecular self-assembly behavior and regulating the spatial distribution and orientation of functional groups remain significant scientific challenges. To address these issues, we have focused on creating enzyme-like catalytic microenvironments, investigating the control of functional group arrangement through molecular self-assembly, and exploring the structure–activity relationships of catalytic materials. We have successfully developed various catalytic materials with enzyme-like functions, applying them in molecular detection, disease treatment, biomass degradation, and the synthesis of high-value chemicals. Our research provides new insights into the precise assembly of molecules and the development of high-performance green catalysts, while also contributing to the understanding of the relationship between enzyme structure and function and the pathways of natural chemical evolution.

Teaching

Progress in Biomolecules Self-assembly

Organic Chemistry Experiments

Frontiers in Biomimetic Materials


Postgraduates

Funding

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Vertical Project

Horizontal Project

Publications

(48) Hu, Y. T.; Li, H.; Ma, M; Cao, W. Hamza, M.; Ma, Y. J.*; Wang, Z. G. *; Li, X. L.*. Controlled Interfacial Tailoring of Hierarchical Silicon Synergizes Charge Transport Enabling Stable and Fast Lithium Storage. Small 2024, 2407016.  

(47) Wang, X. Y.; Xu, S. C.; Zhang, B. L.; Wu, H. F.; Liu, Y. X.; Zhang, X. X. Wang, Z. G.* Dynamic Control of His-Hemin Coordination and Catalysis by Reversible Host-Guest Inclusion in Peptide Assemblies. Journal of Colloid & Interface Science 2025, 678, 421-426. 

(46) Li, S.; Xie, Y. Y.; Zhang, B. L.; Liu, Y. X.; Xu, S. C.; Wu, H. F. ; Du, R. K.; Wang, Z. G.* A Host-Guest Approach to Engineer Oxidase-Mimetic Assembly Featuring Substrate Selectivity and Dynamic Catalysis. ACS Applied Materials & Interfaces 2024, 16, 45319–45326. 

(45) Du, R. K.; Lv, Y. B.; Wu, H. F.; Zhang, B. L.; Liu, Y. X.; Xu, S. C.; Li, S.; Wang, Z. G.* N-Methylation of Histidine to Tune Tautomeric Preferences in Histidine-Heme Coordination and Enzyme-Mimetic Catalysis. Smart Molecules 2024, e20240012. 

(44) Zhang, X. X.; Du, R. K.; Xu, S. C.; Wang, X. Y.; Wang, Z. G.* Enhancing DNA-based Nanodevices Activation through Cationic Peptide Acceleration of Strand Displacement. Nanoscale Horizons 2024, 9, 1582 - 1586.

(43) Xu, S. C.; Liu, Y. X.; Zhang, B. L.; Li, S.; Ye, X. Y.; Wang, Z. G.* Self-Assembly of Multimolecular Components for Engineering Enzyme-Mimetic Materials. Accounts of Materials Research 2024, 10.1021/accountsmr.4c00143.

(42) Zhang, B. L.; Liu, Y. X.; Xu, S. C.; Wang, Z. G.* Flavin-Dependent NADH Dehydrogenase-Mimetic Materials Facilitating Bioinspired Electron Transfer Chain. ACS Materials Letters 2024, 6, 2392–2399.

(41) Xu, S. C.; Wu, H. F.; Liu, Y. X.; Wang, Z. G.* Self-assembled G-fold DNA/Amino Acid Amphiphiles-based Oxidase-mimetic Materials Exhibiting Drug-degrading and Photoswitchable Capabilities. Chemistry of Materials 2024, 36, 4357–4367. 

(40) Liu, Y. X.; Li, Y.; Wu, H. F.; Xu, S. C.; Zhang, B. L.; Li, S.; Du, R. K.; Jiang, M. Q.; Chen, Z. M.; Lv, Y. Q.*; Wang, Z. G.* Robust Oxidase-Mimetic Supramolecular Nanocatalyst for Lignin Biodegradation. Nano Letters 2024, 24, 2520–2528.

(39) Liu, Y. X.; Xu, W. J.; Xu, S. C.; Wu, H. F.; Zhang, B. L.; Song, L.; Wang, Z. G.* Designed Imidazole-based Supramolecular Catalysts for Accelerating Oxidation/Hydrolysis Cascade Reactions. Nano Research 2024, 17, 4916-4923.

(38) Li, S.; Wu, H. F.; Liu, Y. X.; Zhang, B. L.; Xu, S. C.; Wang, Z. G.* An Oxidase-mimetic Nanocatalyst based on Geometry-dependent Biomolecular Self-assembly. Chemistry of Materials 2023, 35, 10515–10523

(37) Du, P. D.; Xu, S. C.; Wu, H. F.; Liu, Y. X.; Wang, Z. G.* Histidine-Based Supramolecular Nanoassembly Exhibiting Dual Enzyme-Mimetic Functions: Alter Tautomeric Preference of Histidine to Tailor the Oxidative/Hydrolytic Catalysis. Nano Letters 2023, 23, 11461–11468.

(36) Du, R. K.; Teng, Q.; Xu, S. C.; Jiang, M. Q.; Irmisch, P.*; Wang, Z. G.* Self-Assembly of Designed Peptides with DNA to Accelerate the DNA Strand Displacement Process for Dynamic Regulation of DNAzymes. ACS Nano 2023, 17, 24753–24762

(35) Jiang, M. Q.; Xu, S. C.; Liu, Y. X.; Wang, Z. G.* Designed DNA/Amino Acid Amphiphile-based Supramolecular Oxidase-Mimetic Catalyst for Colorimetric DNA Detection. Chemical Communications 2023, 59, 14540-14543  (Invited) (A themed collection on “Supramolecular & Macrocyclic chemistry in China”)

(34) Liu, J. H.; Wu, H. F; Liu, Y. X.; Wang, Z. G.* A Colorimetric Sensor based on Oxidase-Mimic Supramolecular Catalyst for Selective and Sensitive Biomolecular Detection. ACS Applied Materials & Interfaces 2023, 15, 48945–48951. 

(33) Xu, S. C.; Wu, H. F.; Liu, S. Y.; Du, P. D.; Wang, H.*; Yang, H. J.; Xu, W. J.; Chen, S. M.; Song, L.; Li, J. K.; Shi, X. H.; Wang, Z. G.* A Supramolecular Metalloenzyme Possessing Robust Oxidase-Mimetic Catalytic Function. Nature Communications 2023, 14, 4040.

(32) Wu, H. F.; Xu, S. C.; Du, P. D.; Liu, Y. X.; Li, H.;* Yang, H. J.; Wang, T.; Wang, Z. G.* A Nucleotide-Copper (II) Complex Possessing Monooxygenase-Like Catalytic Function. Journal of Materials Chemistry B 2023, 11, 7117 - 7125

(31) Zhang, B.; Wu, H.; Li, S.; Liu, Y. X.; Du, P. D.; Wang, Z. G.* Enzyme-mimetic Photodecarboxylation based on the Geometry-dependent Supramolecular Association. ACS Catalysis 2023, 13, 6763-6772.

(30) Liu, Y. X.; Wang, Z.G.* Heme-Dependent Supramolecular Nanocatalysts: A Review. ACS Nano 2023, 17, 13000–13016 

(29) Du, P.; Shen, Y.; Yu, B.*; Wang, Z.G.*; Xu, F. J.* A H2O2-Supplied Supramolecular Material for Post-irradiated Infected Wound Treatment. Advanced Science 2023, 10, 2206851.

(28) Lou, Y.*; Zhang, B.; Ye, X. Y.; Wang, Z. G.* Self-assembly of the De novo Designed Peptides to Produce Supramolecular Catalysts with Built-in Enzyme-like Active Sites: A Review of Structure-Activity Relationship.  Materials Today Nano 2023, 21, 100302. 

(27)  Liu, Q.*; Kuzuya, A; Wang, Z. G.* Supramolecular Enzyme-mimicking Catalysts Self-assembled from Peptides. iScience 2023, 26, 105831. (Invited)

(26) Teng, Q.; Wu, H. F.; Sun, H.; Liu, Y. Q.; Wang, H.; Wang, Z. G.* Switchable Enzyme-mimicking Catalysts Self-Assembled from De novo Designed Peptides and DNA G-quadruplex/Hemin Complex. Journal of Colloid and Interface Science 2022, 628, 1004-1011

(25) Sun, H.; Wu, H. F.; Teng, Q.; Liu, Y. X.; Wang, H.; Wang, Z. G.* Enzyme-Mimicking Materials from Designed Self-Assembly of Lysine-Rich Peptides and G-Quadruplex DNA//Hemin DNAzyme: Charge Effect of the Key Residues on the Catalytic Functions. Biomacromolecules 2022, 23, 3469–3476

(24) Liu, Y. X.; Du, P. D.; Teng, Q.; Sun, H.; Ye, X. Y.; Wang, Z. G.* Self-assembly of Fibril-forming Histidine-rich Peptides for Cofactor-free Oxidase-mimetic Catalysis. Supramolecular Materials 2022, 1, 100012

(23) Du, P. D.; Liu, S. Y.; Sun, H.; Wu, H. F.; Wang, Z. G.* Designed Histidine-rich Peptide Self-assembly for Accelerating Oxidase-Catalyzed Reactions. Nano Research 2022, 15, 4032–4038

(22) Du, P. D.; Xu, S. C.; Xu, Z. K.*; Wang, Z. G.*  Bioinspired Self‐Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials 2021, 31, 2104819. 


pa


(20) Liu, S. Y.; Du, P. D.; Sun, H.; Yu, H. Y.*; Wang, Z. G.* Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catalysis 2020, 10, 14937–14958.

(19) Yu, D.; Zhang, N. N.; Liu, S. Y.; Hu, W. T.; Nie, J. J.; Zhang, K.; Yu, B. *; Wang, Z. G.;* Xu, F. J. * Self-Assembled Nucleotide/Saccharide-Tethering Polycation-Based Nanoparticle for Targeted Tumor Therapy. ACS Materials Letters 2020, 2, 550-556.                  

                                  

(18) Wang, Z. G.; Li, Y. Z.; Wang, H.; Wan, K. W.; Liu, Q.; Shi, X. H.; Ding, B. Q. Enzyme Mimic Based on a Self-Assembled Chitosan/DNA Hybrid Exhibits Superior Activity and Tolerance. Chemistry - A European Journal 2019, 25, 12576-12582.                                                                       

(17) Li, N.; Shang, Y. X.; Han, Z. H.; Wang, T.; Wang, Z. G.*; Ding, B. Q.* Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Interfaces 2019, 11, 13835-13852

(16) Shang, X. Y.; Shi, J.; Liu, X.; Wang, Z. G.*; Ding, B. Q.* A Bumpy Gold Nanostructure Exhibiting DNA-Engineered Stimuli-Responsive SERS Signals. Nanoscale 2018, 10, 9455-9459.                                                            

(15) Wang, Z. G.; Li, N.; Wang, T.; Ding, B. Q. * Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures. Langmuir 2018, 34, 14954–14962.                                                

 (14) Li, Y. Z.; Wang, Z. G.*; Li, H. R.*; Ding, B. Q.* NAD+ Cofactor Regeneration by TMB-Mediated Horseradish-Peroxidase-Catalyzed Reactions. ChemistrySelect 2018, 3, 10900-10904.                                         

(13) Wang, Z. G.*; Wang, H.; Liu, Q.; Duan, F. Y.; Shi, X. H.*; Ding, B. Q.* Designed Self-Assembly of Peptides with G-Quadruplex/Hemin DNAzyme into Nanofibrils Possessing Enzyme-Mimicking Active Sites and Catalytic Functions. ACS Catalysis 2018, 8, 7016–7024.

(12) Liu, Q.; Wang, H.; Shi, X. H.*; Wang, Z. G.*; Ding, B.* Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity. ACS Nano 2017, 11, 7251-7258.                                         

(11) Liu, Q.; Liu, G. C.; Wang, T.; Fu, J.; Li, R. J.; Song, L. L.; Wang, Z. G.*; Ding, B. Q.*; Chen, F.* Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs. ChemPhysChem 2017, 18, 2977-2980.

(10) Wang, Z. G.; Liu, Q.; Li, N.; Ding, B. Q.* DNA-Based Nanotemplate Directed in Situ Synthesis of Silver Nanoclusters with Specific Fluorescent Emission: Surface-Guided Chemical Reactions. Chemistry of Materials 2016, 28, 8834-8841. 

(9) Zhan, P. F.; Wang, Z. G.*; Li, N.; Ding, B. Q.* Engineering Gold Nanoparticles with DNA Ligands for Selective Catalytic Oxidation of Chiral Substrates. ACS Catalysis 2015, 5, 1489-1498. 

(8) Wang, Z. G.*; Liu, Q.; Ding, B. Q.* Shape-Controlled Nanofabrication of Conducting Polymer on Planar DNA Templates. Chemistry of Materials 2014, 26, 3364-3367.                                                                       

(7) Wang, Z. G.; Ding, B. Q.* Engineering DNA Self-Assemblies as Templates for Functional Nanostructures. Accounts of Chemical Research 2014, 47, 1654-1662.                                                         

(6) Zhan, P. F.; Wang, J. Y.; Wang, Z. G.*; Ding, B. Q.* Engineering the pH-Responsive Catalytic Behavior of AuNPs by DNA. Small 2014, 10, 399-406. 

(5) Wang, Z. G.; Ding, B. Q.* DNA-Based Self-Assembly for Functional Nanomaterials. Advanced Materials 2013, 25, 3905-3914.           

(4) Song, C.; Wang, Z. G.*; Ding, B. Q.* Smart Nanomachines Based on DNA Self-Assembly. Small 2013, 9, 2382-2392. 

(3) Wang, Z. G.; Song, C.; Ding, B. Q.* Functional DNA Nanostructures for Photonic and Biomedical Applications. Small 2013, 9, 2210-2222. 

(2) Jiang, Q.; Wang, Z. G.*; Ding, B. Q.* Programmed Colorimetric Logic Devices Based on DNA-Gold Nanoparticle Interactions. Small 2013, 9, 1016-1020.                                                                  

(1) Wang, Z. G.*; Zhan, P. F.; Ding, B. Q.* Self-Assembled Catalytic DNA Nanostructures for Synthesis of Para-directed Polyaniline. ACS Nano 2013, 7, 1591-1598.    


Awards

Patent

Honor Reward

Admissions Information